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Solutions for “Suggestions for reflection and for investigations”  
 

Chapter 1 

 

 A 1.1:  

n = 13: 

Since n is a prime number, all star figures {13/k} with k = 2, 3, 4, 5, 6 can be drawn as a closed polygonal 

lines: 

 

{13/2} 

0 – 2 – 4 – 6 – 8 – 10 – 12 – 1  

– 3 – 5 – 7 – 9 – 11 – 0 

 

{13/3} 

0 – 3 – 6 – 9 – 12 – 2 – 5 – 8  

– 11 – 1 – 4 – 7 – 10 – 0 

 

{13/4} 

0 – 4 – 8 – 12 – 3 – 7 – 11 – 2  

– 6 – 10 – 1 – 5 – 9 – 0 

 

{13/5} 

0 – 5 – 10 – 2 – 7 – 12 – 4 – 9  

– 1 – 6 – 11 – 3 – 8 – 0 

 

{13/6} 

0 – 6 – 12 – 5 – 11 – 4 – 10 – 3  

– 9 – 2 – 8 – 1 – 7 – 0 

 

n = 15: 

Since n = 3 ∙ 5 the star figures {15/k} with k = 2, 4, 7 (coprime) can be drawn as closed polygonal lines: 

 

{15/2} 

0 – 2 – 4 – 6 – 8 – 10 – 12 – 14  

– 1 – 3 – 5 – 7 – 9 – 11 – 13 – 0 

 

{15/4} 

0 – 4 – 8 – 12 – 1 – 5 – 9 – 13  

– 2 – 6 – 10 – 14 – 3 – 7 – 11 – 0 

 

{15/7} 

0 – 7 – 14 – 6 – 13 – 5 – 12 – 4  

– 11 – 3 – 10 – 2 – 9 – 1 – 8 – 0 

The star figure {15/3} consists of 3 regular 5-sides polygons, since 3 is a divisor of 15, star figure {15/5} 

consists of 5 regular 3-sided polygons, since 5 is a divisor of 15, and star figure {15/6} consists of three 5-

pointed stars of type {5/2} because of gcd(15; 6) = 3: 
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{15/3} 

0 – 3 – 6 – 9 – 12 – 0, 

1 – 4 – 7 – 10 – 13 – 1, 

2 – 5 – 8 – 11 – 14 – 2 

 

{15/5} 

0 – 5 – 10 – 0, 1 – 6 – 11 – 1, 

2 – 7 – 12 – 2, 3 – 8 – 13 – 3, 

4 – 9 – 14 – 4 

 

{15/6} 

0 – 6 – 12 – 3 – 9 – 0, 

1 – 7 – 13 – 4 – 10 – 1, 

2 – 8 – 14 – 5 – 11 – 2 

n = 18: 

Since n = 2 ∙ 3 ∙ 3, only the star figures {18/k} with k = 5, 7 (coprime) can be drawn as closed polygonal lines. 

Star figure {18/2} consists of 2 regular 9-sided polgons, since 2 is a divisor of 18. Star figure {18/3} consists 

of 3 regular 6-sided polygons, since 3 is a divisor of 18. Star figure {18/4} consists of two 9-pointed stars of 

type {9/2} because gcd(18;4) = 2. Star figure {18/6} consists of 6 regular triangles, since 6 is a divisor of 18. 

Star figure {18/8} consists of two 9-pointed stars of type {9/4} because of gcd(18;8} = 2. 

 

{18/2} 

0 – 2 – 4 – 6 – 8 – 10 – 12  

– 14 – 16 – 0, 

1 – 3 – 5 – 7 – 9 – 11 – 13  

– 15 – 17 – 1 

 

{18/3} 

0 – 3 – 6 – 9 – 12 – 15 – 0, 

1 – 4 – 7 – 10 – 13 – 16 – 1, 

2 – 5 – 8 – 11 – 14 – 17 – 2 

 

{18/4} 

0 – 4 – 8 – 12 – 16 – 2 – 6  

– 10 – 14 – 0,  

1 – 5 – 9 – 13 – 17 – 3 – 7  

– 11 – 15 – 1 

 

{18/5} 

0 – 5 – 10 – 15 – 2 – 7 – 12  

– 17 – 4 – 9 – 14 – 1 – 6  

– 11 – 16 – 3 – 8 – 13 – 0 

 

{18/6} 

0 – 6 – 12 – 18, 1 – 7 – 13 – 1, 

2 – 8 – 14 – 2, 3 – 9 – 15 – 3, 

4 – 10 – 16 – 4, 5 – 11 – 17 – 5 

 

{18/7} 

0 – 7 – 14 – 3 – 10 – 17 – 6  

– 13 – 2 – 9 – 16 – 5 – 12  

– 1 – 8 – 15 – 4 – 11 – 0 
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{18/8} 

0 – 8 – 16 – 6 – 14 – 4 – 12  

– 2 – 10 – 0,  

1 – 9 – 17 – 7 – 15 – 5 – 13  

– 3 – 11 – 1 

  

 A 1.2:  

Star {5/2} can be colored with 2 

colors: Inside we have a regular 

5-sided polygon = the star {5/1}, 

outside we have 5 equally sized 

areas. 

Star {7/2} can be colored with 2 

colors: Inside we have a regular 

7-sided polygon = the star {7/1}, 

outside we have 7 equally sized 

areas. 

Star {7/3} can be colored with 3 

colors: Inside we have the star 

{7/2} which can be colored with 2 

colors, outside we have 7 equally 

sized areas. 

Star {9/2} can be colored with 2 

colors: Inside we have a regular 

9-sided polygon = the star {9/1}, 

outside we have 9 equally sized 

areas. 

Star {9/3} can be colored with 3 

colors: Inside we have the star 

{9/2} which can be colored with 2 

colors, outside we have 9 equally 

sized areas. 

Star {9/4} can be colored with 4 

colors: Inside we have the star 

{9/3}, which can be colored with 3 

colors, outside we have 9 equally 

sized areas. 

Conclusion: Since star {n/k} consists of star {n/k - 1} and n points on the outside, it can be gradually deduced 

that the star can be colored with k colors. 

 A 1.3:  

A regular 9-sided polygon has ½ ∙ 9 ∙ 6 = 27 diagonals, of which 9 diagonals form the three equilateral 

triangles of the star {9/3} and 9 diagonals each belong to the regular 9-pointed stars {9/2} and {9/4}. 

A regular 10-sided polygon has ½ ∙ 10 ∙ 7 = 35 diagonals, of which 5 diagonals connect only two opposite 

vertices, 10 diagonals form the two regular 5-sided polygons of the star {10/2}, 10 diagonals form the two 5-

pointed stars of which star {10/4} consists and 10 diagonals belong to the regular 10-pointed star {10/3}. 

A regular 11-sided polygon has ½ ∙ 11 ∙ 8 = 44 diagonals, of which 11 diagonals each form the regular stars 

{11/2}, {11/3}, {11/4} and {11/5}. 

A regular 12-sided polygon has ½ ∙ 12 ∙ 9 = 54 diagonals, of which 6 diagonals each connect only two 

opposite vertices, 12 diagonals form the two regular 6-sided polygons of the star {12/2}, 12 diagonals form 

the three squares of the star {12/3}, 12 diagonals form the two regular 6-sided polygons of which star {12/4} 

consists and 12 diagonals belong to the regular 12-pointed star {12/5}. 

Generalization: 

The number of diagonals in a regular n-sided polygon is ½ ∙ n ∙ (n – 3). 

For odd n, the factor n – 3 is an even number and can be divided by 2. ½ ∙ (n – 3) thus indicates how many 

stars can be formed: With n = 5 this is ½ ∙ (n – 3) = 1 star, with n = 7 these are ½ ∙ (n – 3) = 2 stars, with  

n = 9 these are ½ ∙ (n – 3) = 3 stars etc.  

For even n, ½ ∙ n diagonals are useless for drawing stars, because they only connect two opposite vertices. 

So ½ ∙ n ∙ (n – 3) – ½ ∙ n = ½ ∙ n ∙ (n – 4) diagonals remain. ½ ∙ (n – 4) indicates how many stars can be 

formed: With n = 6 this is ½ ∙ (n – 4) = 1 star, with n = 8 these are ½ ∙ (n – 4) = 2 stars, with n = 10 these are  

½ ∙ (n - 4) = 3 stars, and so on.      

Which star types are created depends – as explained – on k: a star made of k polygons with n/k vertices or a 

star made of g stars with n/g vertices or a star that consists of one closed polygonal lines.  
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 A 1.4:  

The “tip” lies "above" a 

diagonal of the 8-sided 

polygon, which connects 

one vertex with the next 

but one vertex. 

Therefore, the angle at 

the “tip” is half as large 

as the corresponding 

central angle, namely 

half as large as  

2 ∙ 360°/8, i.e.  = 45°.    

The “tip” lies "over" one 

side of the 9-sided 

polygon. Therefore the 

angle at the “tip” is half 

as large as the 

corresponding central 

angle, namely half as 

large as 360°/9, i.e.  

 = 20°. 

 

The “tip” lies "above" a 

diagonal of the 10-sided 

polygon, which connects 

one vertex with the 

fourth next vertex. 

Therefore, the angle at 

the “tip” is half as large 

as the corresponding 

central angle, namely 

half as large as  

4 ∙ 360°/10, i.e.  = 72°.    

The “tip” lies "above" a 

diagonal of the 12-sided 

polygon, which connects 

one vertex with the fifth 

next vertex. Therefore, 

the angle at the “tip” is 

half as large as the 

corresponding central 

angle, namely half as 

large as 5 ∙ 360°/10, i.e. 

 = 75°.    

 

 A 1.5:  

There are peripheral angles "above" and "below" the chord. These complement each other to 180°. The 

central angle, which belongs to a peripheral angle "below" the chord, is the complementary angle to the 

central angle, which belongs to a peripheral angle "above" the chord – these two central angles thus 

complement each other to 360°. 

The “tip” is above the diagonal of the 9-sided polygon, which connects one vertex with the fifth next vertex. 

Therefore, the peripheral angle  is half as large as the corresponding central angle, namely half as large as  

5 ∙ 360°/9, i.e.  = 100°.   

 A 1.6:  

The central angle is always greater than 180°.  

In the figure on the left, the “tip” is “above” the diagonal of the 11-sided polygon, which connects one vertex 

with the seventh next vertex. Therefore, the peripheral angle is half as large as the corresponding central 

angle, namely half as large as 7 ∙ 360°/11, i.e.   114.5°.   

In the illustration on the right, the “tip” is “above” the diagonal of the 12-sided polygon, which connects one 

vertex with the eight-next vertex. Therefore, the peripheral angle is half as large as the corresponding central 

angle, namely half as large as 8 ∙ 360°/12, i.e.  = 120°.   

 

 A 1.7:  

Since every star of type {n/2} contains a regular n-sided polygon inside, i.e. a star of type {n/1}, the triangles 

are "put on". 

 

 A 1.8:  

x1 = 1 and x2 = –1 are solutions of the equation x6 – 1 = 0. Therefore the division (x6 – 1) : (x² – 1) is possible 

and one obtains (x4 + x² + 1) as the supplement factor. 

By multiplying you can check that (x4 + x² + 1) can be represented as product (x² + x + 1) ∙ (x² – x + 1).  

You can use the binomial formula:   

(x² + x + 1) ∙ (x² – x + 1) = ((x² + 1) + x) ∙ ((x² +1) – x) = (x² + 1)² – x² = x4 + 2x² + 1 – x² 

The solutions of the quadratic equations x² + x + 1 = 0  and  x² – x + 1 = 0 are: 

ix +−=
2

3

2

1
3

 ; ix −−=
2

3

2

1
4

 ; ix +=
2

3

2

1
5

 ; ix −=
2

3

2

1
6

 

So you get the following coordinates 

(1 , 0) ; ( -1 , 0) ; (
2

1
−  , 

2

3  ) ;  (
2

1
−  , 

2

3
−  ) ; (

2

1  , 
2

3  ) ; (
2

1  , 
2

3
−  ) 
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 A 1.9:  

x1 = 1 and x2 = –1 are solutions of the equation x8 – 1 = 0. Therefore the division (x8 – 1) : (x² – 1) is possible 

and one obtains (x6 + x4 + x² + 1) as the supplement factor. 

After it has been established that x3 = i und x4 = –i are solutions of the equation x8 – 1 = 0, too, also the 

division by (x² + 1) must be possible, i. e. 

(x8 – 1) : (x² – 1) ∙ (x² + 1) = (x8 – 1) : (x4 – 1) = (x4 + 1) 

By multiplication of (x² + 2  x + 1) ∙ (x² – 2 x + 1) one can proof, that this results in (x4 + 1). 

So we have the following solutions of the quadratic equations  x² + 2  x + 1 = 0  and  x² – 2 x + 1 = 0: 

ix +−=
2

2

2

2
5

 ; ix −−=
2

2

2

2
6

 ; ix +=
2

2

2

2
7

 ; ix −=
2

2

2

2
8

  

So we get the following coordinates 

 (1 , 0) ; ( -1 , 0) ; (0 , 1) ; (0 , –1) ; (–
2

2  , 
2

2  ) ;  (–
2

2  , –
2

2  ) ; (
2

2  , 
2

2  ) ; (
2

2  , –
2

2  ) 

 A 1.10: 

4th round: A – E, D – F, C – G, B – H   

5th round: A – F, E – G, D – H, B - C 

6 th round: A – G, F – H, B – E, C – D  

7 th round: A – H, B – G, C – F, D – E  

 A 1.11:. 

 

As in the tournament with 8 teams, you draw a regular 7-sided polygon. The games of a matchday result 

from an individual side of the polygon and the diagonals parallel to it; the vertex opposite to the individual 

side marks the pausing team. 

1st round: A – B, C – G, D – F, E is free from play 

2nd round: B – C, A – D, E – G, F is free from play 

3rd round: C – D, B – E, A – F, G is free from play 

4th round: D – E, C – F, B – G, A is free from play 

5th round: E – F, D – G, A – C, B is free from play 

6th round: F – G, A – E, B – D, C is free from play 

7th round: G – A, B – F, C – E, D is free from play 

 A 1.12:   

From the following symmetrical table you can see that 15 games are taking place. All possible combinations 

are noted in the first row and the first column (in alphabetical order).  

Inside the table there is an "X" if a match pairing is not possible because a player appears twice. The table is 

symmetrical, because with each pairing the reverse pairing is possible, too. 
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 AB AC AD AE BC BD BE CD CE DE 

AB X X X X X X X    

AC X X X X X   X X  

AD X X X X  X  X  X 

AE X X X X   X  X X 

BC X X   X X X X X  

BD X  X  X X X X  X 

BE X   X X X X  X X 

CD  X X  X X  X X X 

CE  X  X X  X X X X 

DE   X X  X X X X X 

To get a nice schedule, you should proceed geometrically.  

If you look at a regular pentagon, you see that the sides and the diagonals correspond to a two man-team.  

If you choose the player which is free from play, then you can determine the teams playing together 
according to a geometrical pattern: 

 

Opposite to the vertex (free from play) there is a trapezoid, from this choose the two parallel sides: 

free from play Team No. 1 Team No. 2 

A CD BE 

B DE AC 

C AE BD 

D AB CE 

E BC AD 

Opposite to the vertex (free from play) there is a trapezoid, from this select the non-parallel sides: 

free from play Team No. 1 Team No. 2 

A BC DE 

B CD AE 

C DE AB 

D AE BC 

E AB CD 

Opposite to the vertex (free from play) there is a trapezoid, from this choose the two diagonals: 

free from play Team No. 1 Team No. 2 

A BD CE 

B CE AD 

C AD BE 

D BE AC 

E BD AC 
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Chapter 2 

 

 A 2.1:   

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 

 

 A 2.2:   

To determine these limits, a quadratic (in)equation must be solved: 

½ ∙ n ∙ (n + 1) ≥ 100  n² + n ≥ 200   (n + ½)² ≥ 200.25  n ≥ 13.65  n ≥ 14     

½ ∙ n ∙ (n + 1) ≥ 1.000  n² + n ≥ 2.000   (n + ½)² ≥ 2000.25  n ≥ 44.22  n ≥ 45  

½ ∙ n ∙ (n + 1) ≥ 1.000.000  n² + n ≥ 2.000.000   (n + ½)² ≥ 2000000.25  n ≥ 1413.71  n ≥ 1414     

 

 A 2.3:  

The squares shown in the figure contain eight triangles, which represent the triangular numbers; in addition, 

there is a dot in the center. So the following relationships are shown in the figures: 

8 ∙ 3 + 1 = 7² ;  8 ∙ 4 + 1 = 9² ;  8 ∙ 5 + 1 = 11² 

General relationship: 

8 ∙ n + 1 = (2n + 1)² 

To proof this you can use n = ½ ∙ n ∙ (n + 1) = ½ ∙ n² + ½ ∙ n: 

8 ∙ n + 1 = 4 ∙ n² + 4 ∙ n + 1 = (2n + 1)² 

Figures for n = 1 and n = 2: 

         

 

 A 2.4:   

• In the figures you see: 

on the left: 3² – 3 = 6 red, 6² – 6 = 30 yellow, 2 ∙ (3 ∙ 6) = 36 orange colored stones;  

in the middle: 6² – 6 = 30 red, 10² – 10 = 90 yellow, 2 ∙ (6 ∙ 10) = 120 orange colored stones; 

on the right: 10² – 10 = 90 red, 15² – 15 = 210 yellow, 2 ∙ (10 ∙ 15) = 300 orange colored stones 

Generally:  (r² – r) + (g² – g) = 2 ∙ r ∙ g   g² – 2rg + r² = r + g  (g – r)² = r + g 

If g and r (with g > r) are two consecutive triangle numbers n and n – 1, then their difference is equal to n. 

According to formula (2.2) we have: n – 1 + n = n² . So we get 

The probability of the event The two balls have the same color can be calculated as follows: 

P( (r , r), (g , g) ) = 
)1()(

²²

)1()(

)1()1(

−++

−−+
=

−++

−+−

grgr

grgr

grgr

ggrr
 

The probability of the event The two balls have different colors can be calculated as follows: 



Heinz Klaus Strick: Mathematics is beautiful, Springer, ISBN: 978-3-662-59060-7 

Solutions for ”Mathematics is beautiful” – page 8 / 119 

P( (r|g), (g|r) ) = 
)1()(

2

−++



grgr

gr
 

A fair game is given, if both events have the same probabilty, i. e.: 

)1()(

2

)1()(

²²

−++


=

−++

−−+

grgr

gr

grgr

grgr
,   

r² – 2rg + g² – r – g = 0, 

(r – g)² = r + g  or   (g – r)² = r + g  

Note: The following table shows the probability of winning if you bet on the event. You can see that it would 

be disadvantageous to bet on the event if the numbers of red and yellow balls differ only slightly. 

 

The drawing of two balls from an urn can be illustrated with the help of a combination table:  

As the first drawn ball is not put back, a ball cannot be drawn twice (grey fields). The combinations belonging 

to the event The balls have the same color  are illustrated by the green fields. The arrowheads indicate that 

these cells can be moved into yellow cells. The green cells that have not been moved obviously fit into the 

“free” cells at the top right and bottom left: 

     

 

 A 2.5:  

Four triangles with n rows are shown, by which the sum 1 + 3 + 5 + ... + (2n + 1) is represented. Obviously 

the following applies: 

4 ∙ [1 + 3 + 5 + … + (2n – 1)] = [(2n – 1) + 1]² = (2n)² = 4n², also 1 + 3 + 5 + … + (2n + 1) = n² 
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 A 2.6:  

In the figure you can see two sums of consecutive odd numbers 

(1 + 3) + 1, (1 + 3 + 5) + (3 + 1), (1 + 3 + 5 + 7) +(5 + 3 + 1), (1 + 3 + 5 + 7 + 9) +(7 + 5 + 3 + 1), 

so for n = 1, 2, 3, 4 we have  

[1 + 3 + … + (2n – 1) + (2n + 1)]  + [(2n – 1) + … + 3 + 1] = (n + 1)² + n² according to formula (2.3) 

 A 2.7:    

The triangle consisting of 2n lines is composed of four smaller triangles: three triangles with n lines (red, 

green, blue) and one triangle with n – 1 lines (yellow). If you add a row with n dots to this smaller triangle, 

you get a triangle with n rows. 

 A 2.8:   

• The number 18 has two odd divisors: 3 and 9. This can be illustrated by the following two figures: 

   

5 + 6 + 7 = 18   3 + 4 + 5 + 6 = 18 

 

• The number 15 has three odd divisors: 3, 5 and 15. This can be illustrated by the following three figures: 

4 + 5 + 6 = 15, 1 + 2 + 3 + 4 + 5 = 15, 7 + 8 = 15  

   

• The number 45 has 5 odd divisors: 3, 5, 9, 15 and 45. This can be illustrated by the following five figures: 

14 + 15 + 16 = 45;       7 + 8 + 9 + 10 + 11 = 45;  1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 =45; 
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5 + 6 + 7 + 8 + 9 + 10 = 45;    22 + 23 = 45 

            

 

 A 2.9:   

next page 

 A 2.10:  

• 2016 has 5 odd divisors: 3, 7, 9, 21, 63. Therefore we get the following 5 representations: 

 2016 = 671 + 672 + 673  

 = 285 + 286 + 287 + 288 + 289 + 290 + 291  

 = 220 + 221 + 222 + 223 + 224 + 225 + 226 + 227 + 228 

 = 86 + 87 + … + 95 + 96 + 97 + … + 106 

 = 1 + 2 + … + 32 + 33 + … + 64  

• 2017 is a prime number, i. e. only one divisor, 

• 2018 = 2 ∙ 1009  has only one odd divisor (1009 is a prime numer), 

• 2019 = 3 ∙ 673  has three odd divisors, 

• 2020 = 2² ∙ 5 ∙ 101  has three odd divisors, 

• 2021 = 43 ∙ 47  has three odd divisors, 

• 2022 = 2 ∙ 3 ∙ 337  has three odd divisors, 

• 2023 = 7 ∙ 17²  has five odd divisors, 

• 2024 = 2³ ∙ 11 ∙ 23 has three odd divisors. 

• 2025 = 34 ∙ 5² has 14 odd divisors.   
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 A 2.9:   

• Overview over the number of odd divisors for n = 3, 4, …, 100 

n odd divisors (> 1) number of 

odd divisors 

 n odd divisors (> 1) number of 

odd divisors 

3 3     1  52 13     1 

4      0  53 53     1 

5 5     1  54 3 9 27   3 

6 3     1  55 5 11 55   3 

7 7     1  56 7     1 

8      0  57 3 19 57   3 

9 3 9    2  58 29     1 

10 5     1  59 59     1 

11 11     1  60 3 5 15   3 

12 3     1  61 61     1 

13 13     1  62 31     1 

14 7     1  63 3 7 9 21 63 5 

15 3 5 15   3  64      0 

16      0  65 5 13 65   3 

17 17     1  66 3 11 33   3 

18 3 9    2  67 67     1 

19 19     1  68 17     1 

20 5     1  69 3 23 69   3 

21 3 7 21   3  70 5 7 35   3 

22 11     1  71 71     1 

23 23     1  72 3 9    2 

24 3     1  73 73     1 

25 5 25    2  74 37     1 

26 13     1  75 3 5 15 25 75 5 

27 3 9 27   3  76 19     1 

28 7     1  77 7 11 77   3 

29 29     1  78 3 13 39   3 

30 3 5 15   3  79 79     1 

31 31     1  80 5     1 

32      0  81 3 9 27 81  4 

33 3 11 33   3  82 41     1 

34 17     1  83 83     1 

35 5 7 35   3  84 3 7 21   3 

36 3 9    2  85 5 17 85   3 

37 37     1  86 43     1 

38 19     1  87 3 29 87   3 

39 3 13 39   3  88 11     1 

40 5     1  89 89     1 

41 41     1  90 3 5 9 15 45 5 

42 3 7 21   3  91 7 13 91   3 

43 43     1  92 23     1 

44 11     1  93 3 31 93   3 

45 3 5 9 15 45 5  94 47     1 

46 23     1  95 5 19 95   3 

47 47     1  96 3     1 

48 3     1  97 97     1 

49 7 49    2  98 7 49    2 

50 5 25    2  99 3 9 11 33 99 5 

51 3 17 51   3  100 5 25    2 
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 A 2.11:   

 

The rectangular figure with the width 1 + 2 + 3 + 4 + 5 and the height 1 + 5 is composed of the squares with 

the areas 1², 2², 3², 4² and 5² and rectangular strips of the height 1 with the areas  

1 ∙ 1, 1 ∙ (1 + 2), 1 ∙ (1 + 2 + 3), 1 ∙ (1 + 2 + 3 + 4) and 1 ∙ (1 + 2 + 3 + 4 + 5).  

It therefore applies: 

(1² + 2² + 3² + 4² + 5²) + (1) + (1+2) + (1+2+3) + (1+2+3+4) + (1+2+3+4+5) = (1+2+3+4+5) · 6 

The sums of natural numbers on the left side (in brackets) can be replaced according to the sum fomula, i.e. 

1 =  ½ · 1² + ½ · 1; 1 + 2 = ½ · 2² + ½ · 2; 1 + 2 + 3 = ½ · 3² + ½ · 3; 1 + 2 + 3 + 4 = ½ · 4² + ½ · 4;  

1 + 2 + 3 + 4 + 5 =  ½ · 5² + ½ · 5, 

So we have: 

(1² + 2² + 3² + 4² + 5²) + (½ · 1² + ½ · 1) + (½ · 2² + ½ · 2) + (½ · 3² + ½ · 3)  + (½ · 4² + ½ · 4)  

 + (½ · 5² + ½ · 5) = (1 + 2 + 3 + 4 + 5) · 6 

Rearranged we get 

(1² + 2² + 3² + 4² + 5²) + ½ · (1² + 2² + 3² + 4² + 5²) + ½ · (1 + 2 + 3 + 4 + 5) = (1 + 2 + 3 + 4 + 5) · 6 

and further 3/2 · (1² + 2² + 3² + 4² + 5²) = 11/2 · (1 + 2 + 3 + 4 + 5)  

Solved to the sum of square numbers it results 

1² + 2² + 3² + 4² + 5² = 11/3 · (1 + 2 + 3 + 4 + 5) 

Finally we replace the term with the sum of the first five consecutive numbers 

1² + 2² + 3² + 4² + 5² = 11/3 · ½ · (5² + 5) = 55  

 

 A 2.12:  

For the sum of the first n square numbers we have: )12()1(
6

1
...321 2222 ++=++++ nnnn  

Für die Summe der ersten n geraden Quadratzahlen folgt hieraus: 

)12()1(
3

2
)...321(2)2(...642 222222222 ++=++++=++++ nnnnn  

Therefore we get for the sum of the first n odd square numbers: 

)12()1(
3

2
)14()12(2

6

1
])2(...42[])2(..21[)12(..31 222222222 ++−++=++−+++=−+++ nnnnnnnnn  

)12()12(
3

1
]2214[)12(

3

1
−+=−−++= nnnnnnn . 

Note: You can find wonderful illustrations under 

http://www.walser-h-m.ch/hans/Miniaturen/S/Summe_unger_Quadratzahlen/Summe_unger_Quadratzahlen.htm 

http://www.walser-h-m.ch/hans/Miniaturen/S/Summe_unger_Quadratzahlen2/Summe_unger_Quadratzahlen2.htm 

http://www.walser-h-m.ch/hans/Miniaturen/S/Summe_unger_Quadratzahlen3/Summe_unger_Quadratzahlen3.htm 
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 A 2.13:   

As the sum of two consecutiv square numbers is always an even number, they can be represented as sums 

of consecutive natural numbers – according to Sylvester’s theorem: 

Examples: 

1² + 2² = 5 = 2 + 3;    

2² + 3² = 13 = 6 + 7;   

3² + 4² = 25 = 5² = 12 + 13 = 3 + 4 + 5 + 6 + 7;  

4² + 5² = 41 = 20 + 21;  5² + 6² = 61 = 30 + 31;  

6² + 7² = 85 = 5 · 17 = 42 + 43 = 15 + 16 + 17 + 18 + 19 = 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13; … 

In some of these examples, there are obviously several ways to display them. However, since the examples 

also include prime numbers that have only one odd divisor (namely themselves), i.e. for which there is only 

one way of representing as a sum, there is only one common way of representation for all sums of two 

consecutive square numbers, namely as the sum of two consecutive numbers: 

n² + (n+1)² = n² + n² + 2n + 1 = (n² + n) + (n² + n + 1) = [ n · (n+1) ] + [ n · (n+1) + 1 ]  

 

 A 2.14:   

Each of the triangles on the left side contains once the number 1, twice the number 2, three times the 

number 3, four times the number 4, five times the number 5, six times the number 6 and seven times the 

number 7; the sum of all fields of a triangle is therefore  

1² + 2² + 3² + 4² + 5² + 6² + 7².  

In the triangle on the right, each cell contains the sum 2 ∙ 7 + 1 = 15. 

Therefor ewe have 

3 · (1² + 2² + 3² + 4² + 5² + 6² + 7²) = (1 + 2 + 3 + 4 + 5 + 6 + 7) · (2 · 7 + 1) = 420, i. e. 

1² + 2² + 3² + 4² + 5² + 6² + 7² = 140. 

Generally we have   

3 · (1² + 2² + 3² + … + n²) = (1 + 2 + 3 + … + n) · (2n + 1) according to   

1 + 2 + 3 + … + n = ½ · n · (n + 1) we get the proposition. 

 

 A 2.15: 

We can find the following properties: 

– The sum of the first 32 odd cube numbers is equal to the sum of 11 consecutive powers of 2 (starting 

with the exponent 10):   
201110333 2...2263..31 +++=+++  = 1111111111100000000002. 

– The sum of the first 64 odd cube numbers is equal to the sum of 13 consecutive powers of 2 (starting 

with the exponent 12):   
241112333 2...22127..31 +++=+++  = 11111111111110000000000002. 

From formula 2.5 we get a formula for the sum of the first n even cube numbers: 

22333333333 )1(2)...321(2)2(...642 +=++++=++++ nnnn  

Therefore it results for the sum of the first n odd cube numbers: 

2222

4
1333333333 )1(2)12()2(])2(...42[])2(..21[)12(..31 +−+=++−+++=−+++ nnnnnnn  

24222222222 2)12()242144()1(2)12( nnnnnnnnnnnnn −=−=−−−++=+−+= , i. e. 

24333 2)12(..31 nnn −=−+++ . 
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In the case that the odd number 2n – 1 is the predecessor of a power of two, i. e. for  

2 2 · 2 – 1 = 3, 2 · 2² – 1 = 7, 2 · 2³ – 1 = 15, 2 · 24 – 1 = 31  and so on,  

you can also note this relationship as follows  

kkkkk 21424333 22)2()2(2)122(..31 −=−=−+++ + . 

Powers of two have the special property that they are each greater by 1 than the sum of all powers of two 

with a smaller exponent: 122...2221 132 −=+++++ − nn . 

Therefore we kann write: 24k+1 = ( ) 12...2221 432 ++++++ k  und 22k = ( ) 12...2221 1232 ++++++ −k , 

and thus kkkkkk 4122214333 2...2222)122(..31 +++=−=−+++ ++ . 

 

 A 2.16:  

More examples for sums of consecutive cube numbers: 

4³ + 5³ = 189 = 3³ · 7 = 94 + 95 = 62 + 63 + 64 = 24 + 25 + 26 + 27 + 28 + 29 + 30  

17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25 = … (display as sum of 2, 3, 7, 9, 21, 27 or 63 numbers);   

5³ + 6³ = 341 = 11 · 31 = 170 + 171 = 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33 + 34 + 35 + 36 = …  

(display as sum of 2, 11 or 31 numbers);  

6³ + 7³ = 559 = 13 · 43 = … (display as sum of 2, 13 or 43 numbers); … 

From the examples it can be assumed that there are two ways of displaying such sums:  

➢ Display as sum of two consecutive natural numbers:  

n³ + (n+1)³ = n³ + (n³ + 3n² + 3n + 1) = [ n³ + ½ · 3 · n · (n+1) ] + [ n³ + ½ · 3 · n · (n+1) + 1]  

Note: n · (n+1) is an even number, i. e. half of it is a natural number, too. 

➢ Display as sum of 2n + 1 consecutive natural numbers: The sum of the two consecutive cube numbers 

n³ + (n+1)³ is divisble by the odd natural number 2n + 1:  

n³ + (n+1)³ = (2n³ + 3n² + 3n +1) = (2n + 1) ∙ (n² + n + 1),  

therefore the mean summand is n² + n + 1, and thus the sum can be displayed as follows:  

n³ + (n+1)³ = (n² + 1) + (n² + 2) + … + (n² + 2n + 1) = (n² + 1) + (n² + 2) + … + (n + 1)² 

1³ + 2³ = 2 + 3 + 4 2³ + 3³ = 5 + 6 + 7 + 8 + 9 3³ + 4³ = 10 + 11 + 12 + 13 + 14 + 15 + 16 

                

Note: A 3-dimensional illustration of this property can be found in  

Roger B. Nelsen: Proofs without Words II, MAA, 2000, p. 94. 
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 A 2.17:   

For three adjacent L-shaped forms the following applies: An odd square number which is the sum of three 

consecutive odd numbers must be divisible by 3 (since the first of the three numbers is 2 less than the 

middle number and the third is 2 more). This results in  

9² = 81 = 25 + 27 + 29 = (12 + 13) + (13 + 14) + (14 + 15) 

as the total number of blue stones in the three L-shaped forms and 12² as the number of red stones and 15² 

as the total number of red and blue stones, see figure in the book.  

Here the first number triples of the type with three L-shaped forms: 

n an = 3· (2n+1) 9 · (2n + 1)² = 36n² + 36n + 9 bn = 6n · (n + 1) cn = 6n · (n + 1) + 3  

1 9 81 = (12 + 13) + (13 + 14) + (14 + 15) 12 15 

2 15 225 = (36 + 37) + (37 + 38) + (38 + 39) 36 39 

3 21 441 = (72 + 73) + (73 + 74) + (74 + 75) 72 75 

4 27 729 = (120 + 121) + (121 + 122) + (122 + 123) 120 123 

5 33 ... 180 183 

… … ... … … 

 
The number triples belonging to the figures with three L-shaped forms are obtained by tripling the number of 
triples known from the figures with one L-shaped form: 
an  = 2n + 1; bn = 3 ∙ (2n + 1)²; cn = 2n ∙ (n + 1) + 1 
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Chapter 3 

 

 A 3.1: 

Player No 1 wins according to game rule No 1 if the number of squares that can be drawn is even; he wins 

according to game rule No 2 if the number of squares of different sizes is an even number. 

The following table shows an overview (which can be continued accordingly) of how the a x b rectangles (i.e. 

of width a and height b) can be dissected with squares as large as possible.  

From the different highlighted colours you can see which player wins the game according to rule  

No 1 or No 2: 

Player No 1 wins according to game rule No 1 and according to game rule No 2. 

Player No 1 wins according to game rule No1 and looses according to game rule No 2. 

Player No 1 looses according to game rule No 1 and wins according to game rule No2. 

Player No 1 looses according to game rule No 1 and according to game rule No 2. 

 

  b       a → 1 2 3 4 5 6 

1 1 ∙ 1²      

2 2 ∙ 1² 1 ∙ 2²     

3 3 ∙ 1² 1 ∙ 2² + 2 ∙ 1²  1 ∙ 3²    

4 4 ∙ 1² 2 ∙ 2² 1 ∙ 3² + 3 ∙ 1² 1 ∙ 4²   

5 5 ∙ 1² 2 ∙ 2² + 1 ∙ 1² 1 ∙ 3² + 1 ∙ 2² + 2 ∙ 1² 1 ∙ 4² + 4 ∙ 1² 1 ∙ 5²  

6 6 ∙ 1² 3 ∙ 2² 2 ∙ 3² 1 ∙ 4² + 2 ∙ 2² 1 ∙ 5² + 5 ∙ 1² 1 ∙ 6² 

 

 A 3.2:  

(1)  ]3;3[
3

1
3

3

10
=+=  (2)  ]4;3[

4

1
3

4

13
=+=  (3) ]5;2[

5

1
2

5

11
=+=  

(4) ]5,1;2[

5

1
1

1
2

5

6

1
2

6

5
2

6

17
=

+

+=+=+=  

(5) ]2,3;2[

2

1
3

1
2

2

7

1
2

7

2
2

7

16
=

+

+=+=+=  

(6) ]2,1,2;2[

2

1
1

1
2

1
2

2

3

1
2

1
2

3

2
2

1
2

3

8

1
2

8

3
2

8

19
=

+

+

+=

+

+=

+

+=+=+=  
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 A 3.3:  

31321

3230103210

32

31321
0

3

2

1

03210

1

1

1

1

1

1
],,;[

aaaaa

aaaaaaaaaa
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aaaaa
a

a
a

a

aaaaa

++

++++
=

+

++
+=

+

+

+=

 

 

 A 3.4:  

For example, if in the continued fraction [ a0 ; a1 , a2 , a3 ] the following holds for a3: a3 = 1, then the last 

mixed fraction in the continued fraction is equal to 

3

2

1

a
a + , i.e. a2 + 1, the last mixed fraction does not 

contain a fraction at all, but is a natural number. 

Therefore we have:  [ a0 ; a1 , a2, …, an-1, 1] = [ a0 ; a1 , a2, …, an-1 + 1] 

 

 A 3.5:  

1 1 1 1 13 43
1 1 1 1 1

1 1 4 30 30 30
2 2 2

1 13 13 13
3

4 4

+ = + = + = + = + =

+ + +

+

 

 

 A 3.6:  

Dissection of a 3x5-rectangle, a 2x3-rectangle and a 1x2-rectangle with a spiral consisting of quarter circles  

     

 

 A 3.7:  

From (3.1) we get: 

2

3

1
2

1
3

12

13

12

121
],2;1[ →

+

+

=
+

+
=

+

++
=

n

n

n

n

n

nn
n ,  

i. e. the ratio of the side lengths of the rectangle converges to 1.5, so the ratio of the side lengths  

converge to 3 : 2. 

From (3.2) we get: 

3

5

2

1
3

2
5

13

25

121

12111211
],2,1;1[ →

+

+

=
+

+
=

++
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= n

n

n

nn

nnn
n  
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 A 3.8: 

Ratio of the 

side lengths 
5

2.5
2
=   

8
2.6

3
=  

13
2.6

5
=  

21
2.625

8
=  

34
2.61538...

13
=  

… 

Dissection [2 ; 2] [2 ; 1 , 2] [2 ; 1 , 1 , 2] [2 ; 1 , 1 , 1 , 2] [2 ; 1 , 1 , 1 , 1 , 2] … 

This sequence has the same values as the sequence of quotients of consecutive Fibonacci numbers, 

augmented by 1, as can generally be demonstrated as follows 

1
11

1

1

1 +=
+

=
−−

−

−

+

n

n

n

nn

n

n

f

f

f

ff

f

f
 

 

 A 3.9: 

   

The first quotient describes a rectangle with the side lengths a and b (the rectangle for the continued fraction 

[1; 2] is colored green). When changing to the continued fraction [1; 2, 2] this rectangle has to be 

supplemented by a square with the side length b and by a square with the side length a + b, so that a 

rectangle with side lengths (a + b) + b and a + b arises. 

This also applies to the next steps, see figure on the left.  

 

 

 A 3.10:  

Ratio of  

side lengths 
5

1.6
3
=  

19
1.72

11
=  

71
1.73170

41
=  

… 

Dissection [1 ; 1 , 2] [1 ; 1 , 2 , 1 , 2] [1 ; 1 , 2 , 1 , 2 , 1 , 2] … 

Continued  

fraction 

2

1
1

1
1

+

+  

2

1
1

1
2

1
1

1
1

+

+

+

+  

2

1
1

1
2

1
1

1
2

1
1

1
1

+

+

+

+

+

+
 … 

The elements of this sequence of quotients increase more and more slowly and converge to a limit:  

If you start with 
b

a
 for the first quotient, then the next quotient is 

ba

ba

2

32

+

+
.  

Therefore the following applies for the limit:  

3²3²²322²)32()2(
2

32
2

=







=+=++=+

+

+
=

b

a
bababababbabaa

ba

ba

b

a
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Thus the limit is 3]2,1;1[ = . The rectangles associated to this sequence converge to a rectangle with 

the ratio of side 1:3 length. 

 

 A 3.11:  

Ratio of  

side lengths 
3

1.5
2
=  

7
1.4

5
=  

17
1.416

12
=  

41
1.4137...

29
=  

99
1.414285...

70
=  

Difference to 2  +0.085786 -0.014214 +0.002453 -0.000421 +0.000072 

 

Ratio of  

side lengths 
5

1.6
3
=  

19
1.72

11
=  

71
1.73170

41
=  

265
1.732026...

153
=  

989
1.732049...

571
=  

Difference to 3  -0.065384 -0.004778 -0.000343 -0.00025 -0.000002 

 

 A 3.12: 
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( ) ( ) ( )
( )

( )
( )
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 A 3.13:  

The reciprocal of the continued fraction [a; b], i. e. 
b

a
1

+ , is 

b
a

b
a

1

1
0

1

1

+

+=

+

, i. e. [0; a, b].  

Generally applies: [0; a1, a2, a3, …, an]  and  [a1; a2, a3, …, an]  are inverse to each other. 

 

 A 3.14:  

After the first elements 4/1 = [4; ] ; 9/4 = [2; 4] ; 16/9 = [1; 1, 3, 2] you can realize that there is a certain rule: 

25/16 = [1; 1, 1, 3, 2]    36/25 = [1; 2, 3, 1, 2]     

49/36 = [1; 2, 1, 3, 3]    64/49 = [1; 3, 3, 1, 3]     

81/64 = [1; 3, 1, 3, 4]    100/81 = [1; 4, 3, 1, 4]     

121/100 = [1; 4, 1, 3, 5]    144/121 = [1; 5, 3, 1, 5]     

169/144 = [1; 5, 1, 3, 6]    196/169 = [1; 6, 3, 1, 6] 

generally we have: 

(2n + 1)²/(2n)² = [1; n – 1, 1, 3, n]  (2n)²/(2n – 1)² = [1; n – 1, 3, 1, n – 1]  
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Chapter 4 

 

 A 4.1: 

• 3 possible combinations for the area 14: 

1 + 13 = 3 + 11 = 5 + 9 = 14 

• 4 possible combinations for the area 16 and for 18: 

1 + 15 = 3 + 13 = 5 + 11 = 7 + 9 = 16 

1 + 17 = 3 + 15 = 5 + 13 = 7 + 11 = 18  

• 5 possible combinations for the area 20 and for 22: 

1 + 19 = 3 + 17 = 5 + 15 = 7 + 13 = 9 + 11 = 20 

1 + 21 = 3 + 19 = 5 + 17 = 7 + 15 = 9 + 13 = 22 

allgemein: 

• n  possible combinations for the area 4n ∙  and for (4n + 2) ∙ : 

1 + (4n – 1) ∙ , 3 + (4n – 3) ∙ , 5 + (4n – 5) ∙ , …, (2n – 1) ∙  + (2n + 1) ∙  

1 + (4n + 1) ∙ , 3 + (4n – 1) ∙ , 5 + (4n – 3) ∙ , …, (2n – 1) ∙  + (2n + 3) ∙  

 

 

 A 4.2:  

The following table contains all possible combinations of three odd summands up to the maximum sum  

of 39: in the column on the left, you see the sums of two summands, and in the row on the top, the third 

summands. 

Thus there are  

1 possibility for the sum 9 of three circular rings (namely 1 + 3 + 5), 

1 possibility for the sum 11 …    2 possibilities for the sum 13 … 

 3 possibilities for the sum 15 …  4 possibilities for the sum 17 … 

 5 possibilities for the sum 19 …  7 possibilities for the sum 21 … 

 8 possibilities for the sum 23 …  10 possibilities for the sum 25 … 

12 possibilities for the sum 27 …  14 possibilities for the sum 29 … 

16 possibilities for the sum 31 …  19 possibilities for the sum 33 … 

21 possibilities for the sum 35 …  24 possibilities for the sum 37 … 

27 possibilities for the sum 39 of three circular rings  

The website https://oeis.org/ can help to find the next elements of the sequence. 
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Chapter 5 

 

 A 5.1: 

The element “T” covers three dark fields and one light field (or vice versa). The rectangle has the same 

number of light fields as dark fields in a checkerboard coloring. No matter how you color the squares of the 

five tetrominoes: Eleven squares have one color and nine squares have the other color – thus it does not 

match. 

 A 5.2:   

It is not possible to tessellate a 2x20 rectangle. 

     

 A 5.3:  

If you use the element “T”, you must use a second time (because of the chessboard coloring), and if it is not 

used, you will quickly see that the other four elements do not fit into the square at the same time. 

              

 A 5.4:  

To lay out a rectangle with 4x6 = 24 squares with at least one element of each type means to use one piece 

of type I, O, L or S and two pieces of type T, which must be placed in such a way that 3 dark squares and 1 

light square are covered by one of the two “T”s and 1 dark square and 3 light squares by the other “T”. 

     

 A 5.5:   

If you colour the squares in the style of a chessboard, 16 squares are colored in one color and 12 in the 

other. This means that for the tessellation with tetrominoes, the element T must be used exactly twice.    

    

 A 5.6:   

16 squares: If you use pieces of type T when laying the triangular figure shown with 1 + 3 + 5 + 7 = 16 

squares, then you need 2 or 4 of them, because in a chessboard coloring there must be 1 + 2 + 3 = 6 

colored in one color and the remaining 10 in the other color. Pieces of type L or type O cannot be used, as 

they would block out individual units into which no tetromino would fit in. 



Heinz Klaus Strick: Mathematics is beautiful, Springer, ISBN: 978-3-662-59060-7 

Solutions for ”Mathematics is beautiful” – page 23 / 119 

    

36 squares: Considering the chessboard coloring, 1 + 2 + 3 + 4 + 5 = 15 squares would be colored in one 

color and the remaining 21 in the other. Because of this difference 3 (or 5 or 7) pieces of type T are 

necessary. Since the figure is large enough, pieces of type L or type O can be used, too. 

       

 A 5.7:   

With the exception of element T, where 4 squares are colored in one color and 1 square in the other color, 

the ratio is 3 to 2 for all the other types. 

             

           

 A 5.8: 

All possibilities can be found on the websites listed in the “references” (see ch. 5.4). 

 

 A 5.9:   

  

 

 A 5.10:   

All possibilities can be found on the websites listed in the “references” (see ch. 5.4). 

 

 A 5.11:  

All possibilities can be found on the websites listed in the “references” (see ch. 5.4). 
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 A 5.12:   

Here are two examples for the 25th of a month. 

     

        

 A 5.13:   

All possibilities can be found on the websites listed in the “references” (see ch. 5.4). 

 

 A 5.14:   

In the triangular figure with 1 + 2 + 3 + 4 = 10 squares you have 1 + 3 = 4 squares in one color and 2 + 4 = 6 

in the other color, 

in the triangular figure with 1 + 2 + 3 + 4 + 5 = 15 squares you have 2 + 4 = 6 in one color and 1 + 3 + 5 = 9 

in the other color, 

in the triangular figure with 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 squares you have 2 + 4 + 6 + 8 = 20 in one 

color and 1 + 3 + 5 + 7 + 9 = 25 in the other color, 

in the triangular figure with 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 squares you have 2 + 4 + 6 + 8 + 10 = 

30 in one color and 1 + 3 + 5 + 7 + 9 = 25 in the other color. 

       

 

 A 5.15:   

There are two possibilities to tessellate the triangular figure of 10 squares with two pentominoes. 

        

There are seven possibilities to tessellate the triangular figure of 15 squares with three pentominoes. 

In the first four cases, the tessellation of the triangular figures with 10 squares is supplemented by a 

pentomino of type I. A fifth type is shown on the right. The last two possibilities can be found if you start with 

type Y (see picture on the right where the remaining squares are left white).  
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 A 5.16: 

Here are two examples each. 

      

     

 

 A 5.17:   
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In the following picture, you see how we used the possibilities from above (how to tessellate triangles with 10 

or 15 squares). 

     

       

In the following illustrations, we show how partial areas can be tessellated in different ways. 

There are four different possibilities for the partial area on the left and three possibilities for the partial area 

on the right. However, these cannot be combined independently of each other. 

     

          

In the following solutions we use the symmetrical situation. 

      

      

 A 5.18:   

   

Have you found other solutions? (→ strick.lev@t-online.de) 
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 A 5.19:  

     

         

         

         

           

 A 5.20:   

Nr. hexominoes initial pentominoes 

1 

  

2 

     

3 

        

4 

       

5 
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6 

          

7 

       

8 

    

9 

      

10 

      

11 

         

12 

        

13 

  

14 

  

   

15 
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16 

 

 

17 

   

18 

    

19 

      

20 

    

21 

    

22 

      

23 

    

24 

    

25 
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26 

 
     

27 

 
       

28 

 
   

29 

 
     

30 

 

 

31 

  

32 

 
   

33 

 
   

34 
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35 

  

 

Nr.  pentominoes initial tetrominoes 

1 

 

     

2 

  

3 

    

4 

    

5 

 

       

6 

 

   

7 

  

8 

 

 

9 
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10 

 

 

11 

      

12 

 

 

 

 

 

Another way to find the number of combinations could be done using a spreadsheet as follows: 
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You start by noting all dual numbers whose sum cross is 3. With these dual numbers you can generate 
vectors whose components consist of 3 ones and otherwise zeros. Then the dot product is formed with a 
vector of the same dimension whose components are odd numbers in ascending order (1, 3, 5, 7, 9, ...). 

The digits of the dual numbers are noted in reverse order.  

By this method you get all sums with three odd summands. 

Examples: 

710 = 2111:  (1,1,1) * (1, 3, 5) = 9 

1110 = 21011:  (1,1,0,1) * (1, 3, 5, 7) = 11 

1310 = 21101:  (1,0,1,1) * (1, 3, 5, 7) = 13 

1410 = 21110:  (0,1,1,1) * (1, 3, 5, 7) = 15 

1910 = 210011:  (1,1,0,0,1) * (1, 3, 5, 7, 9) = 13 

2110 = 210101:  (1,0,1,0,1) * (1, 3, 5, 7, 9) = 15 

etc. 

Then you (the spreadsheet) can count how many times the sums 9, 11, 13, ... occur. 

However, the following graphical method is easier to implement: 

1 + 3 + 5 = 9 

overlap to the right: 

0 stones (0 + 0 + 0) 

 

1 + 3 + 7 = 11 

overlap to the right: 

1 stone (0 + 0 + 1) 

 

1 + 3 + 9 = 13 

overlap to the right: 

2 stones (0 + 0 + 2) 

 

1 + 5 + 7 = 13 

overlap to the right: 

2 stones (0 + 1 + 1) 
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1 + 3 + 11 = 15 

overlap to the right: 

3 stones (0 + 0 + 3) 

 

1 + 5 + 9 = 15 

overlap to the right: 

3 stones (0 + 1 + 2) 

 

3 + 5 + 7 = 15 

overlap to the right: 

3 stones (1 + 1 + 1) 

 

The odd number of stones are arranged as L-shaped forms (see above), with the axis of symmetry lying in 
the diagonal of the square of side length 3. 

The total number of stones can be read from the stones protruding to the right: 

Total number = stones in the square + overlap above + overlap to the right  = 9 + 2 ∙ overlap to the right  

If, for example, 5 stones protrude to the right, this means that the sum 9 + 2 ∙ 5 = 19 is shown. 

If you want to know in how many ways certain sums can be illustrated, you only have to consider in how 
many ways a certain protrusion is possible. The three summands are noted in ascending order, starting at 0: 

sum overlap combinations 

9 0 0 + 0 + 0 

11 1 0 + 0 + 1 

13 2 0 + 0 + 2, 0 + 1 + 1 

15 3 0 + 0 + 3, 0 + 1 + 2, 1 + 1 + 1 

17 4 0 + 0 + 4, 0 + 1 + 3, 0 + 2 + 2, 1 + 1 + 2 

19 5 0 + 0 + 5, 0 + 1 + 4, 0 + 2 + 3, 1 + 1 + 3, 1 + 2 + 2 

… … … 

 

 A 4.3:  

By systematic trial and error you can find 

1 possibility for the sum 16: 1 + 3 + 5 + 7 
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1 possibility for the sum 18: 1 + 3 + 5 + 9 

2 possibilities for the sum 20: 1 + 3 + 5 + 11, 1 + 3 + 7 + 9 

3 possibilities for the sum 22: 1 + 3 + 5 + 13, 1 + 3 + 7 + 11, 1 + 5 + 7 + 9 

5 possibilities for the sum 24:  

1 + 3 + 5 + 15, 1 + 3 + 7 + 13, 1 + 3 + 9 + 11, 1 + 5 + 7 + 11, 3 + 5 + 7 + 9, 

6 possibilities for the sum 26:  

1 + 3 + 5 + 17, 1 + 3 + 7 + 15, 1 + 3 + 9 + 13, 1 + 5 + 7 + 13, 1 + 5 + 9 + 11, 

3 + 5 + 7 + 11 

9 possibilities for the sum 28:  

1 + 3 + 5 + 19, 1 + 3 + 7 + 17, 1 + 3 + 9 + 15, 1 + 3 + 11 + 13, 1 + 5 + 7 + 15,  

1 + 5 + 9 + 13, 1 + 7 + 9 + 11, 3 + 5 + 7 + 13, 3 + 5 + 9 + 11 

11 possibilities for the sum 30:  

1 + 3 + 5 + 21, 1 + 3 + 7 + 19, 1 + 3 + 9 + 17, 1 + 3 + 11 + 15, 1 + 5 + 7 + 17,  

1 + 5 + 9 + 15, 1 + 5 + 11 + 13, 1 + 7 + 9 + 13, 3 + 5 + 7 + 15, 3 + 5 + 9 + 13, 

3 + 7 + 9 + 11 

etc. 

You could also start that way: 

There is only 1 possibility to form a sum with 4 (different) summands by using the 4 numbers 1, 3, 5, 7:  

1 + 3 + 5 + 7 = 16. 

There are 5
4

5
=








 possibilities to form a sum with 4 (different) summands by using the numbers 1, 3, 5, 

7, 9. Thus there are 4 additional combinations to form a sum: 

  

1 + 3 + 5 + 9 = 18, 1 + 3 + 7 + 9 = 20, 1 + 5 + 7 + 9 = 22, 3 + 5 + 7 + 9 = 24. 

There are 15
4

6
=








 possibilities to form a sum with 4 (different) summands by using the numbers 1, 3, 

5, 7, 9, 11. Thus there are 10 additional combinations to form a sum: 

These are all such sums which contain 11 as summand, i. e. all possibilities with three summands which 

contain 1, 3, 5, 7 or 9 as summands, i. e. 10
3

5
=








:  

1 + 3 + 5 + 11 = 20,  1 + 3 + 7 + 11 = 22,   

1 + 3 + 9 + 11 = 1 + 5 + 7 + 11 = 24,  1 + 5 + 9 + 11 =  3 + 5 + 7 + 11 = 26,  

1 + 7 + 9 + 11 = 3 + 5 + 9 + 11 = 28,  3 + 7 + 9 + 11 = 30, 5 + 7 + 9 + 11 = 32. 

When you consider the 7 numbers 1, 3, 5, 7, 9, 11, 13 there are 35
4

7
=








 ways to form a sum with 

4 summands, i. e. 20 additional combinations. These are all such sums which contain 13 as summand, i. e. 

all possibilities with three summands which contain 1, 3, 5, 7, 9, 11 as summands, i. e. 20
3

6
=








:  

1 + 3 + 5 + 13 = 22, 1 + 3 + 7 + 13 = 24, 1 + 3 + 9 + 13 = 1 + 5 + 7 + 13 = 26,  

1 + 3 + 11 + 13 = 1 + 5 + 9 + 13 = 3 + 5 + 7 + 13 = 28,  

1 + 5 + 11 + 13 = 1 + 7 + 9 + 13 = 3 + 5 + 9 + 13 = 30, 

1 + 7 + 11 + 13 = 3 + 5 + 11 + 13 = 3 + 7 + 9 + 13 = 32,  

1 + 9 + 11 + 13 = 3 + 7 + 11 + 13 = 5 + 7 + 9 + 13 = 34, 

3 + 9 + 11 + 13 = 5 + 7 + 11 + 13 =  36, 5 + 9 + 11 + 13 = 38, 7 + 9 + 11 + 13 = 40. 
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etc.  

Another possibility is to determine the number of possibilities by means of dual numbers with a sum cross of 

4 (see A 4.2). Or you can choose the graphical method described above, where you have to examine the 

overlap of a square with 16 stones ... (as shown in the figure, 1 + 5 + 7 + 11). 

 

 A 4.4:  

If both areas are equal in size, then the area of the inner circle is half the size of the total area. For the radii 

of the two circles, the following applies: routside = 2 ∙ rinside, because we have  

green + light blue =  ∙ routside² = 2 ∙ ( ∙ rinside²) = 2 ∙ light blue.  

Since 2  is not a rational number, i. e. it cannot be represented as a fraction of two natural numbers, there 

are no suitable circular rings with the width 1. 

The same applies to the second figure, where the equation routside = 3 ∙ rinside should be fulfilled. In addition, 

the following should also apply: rmiddle = 2 ∙ rinside 

For the third figure, the radius of the outer circle is twice as large as that of the blue circle on the inside (the 

area of the red circle is half the total area), but the following should also apply: rsecond circle inside = 2 ∙ rinside 

and rsecond circle inside = 3 ∙ rinside. 

 A 4.5:   

In the figures shown, the inner 5 circular rings are coloured light blue; together they have an area of 5² = 25. 

The total figure contains 7 circular rings with an area of 7² = 49, i.e. the green circular rings have an area of 

7² – 5² = 24.  

It therefore applies: 2
5

7

²5

²7
2









= . The fraction 

5

7
 is therefore an approximation for 2 . From the 

continued fraction expansion of 2  (see chapter 3) we know that better approximations can be obtained 

with with 
ba

ba

+

+ 2
, i. e. 

12

17
 and further 

29

41
. 

 A 4.6:   

From the continued fraction expansion of 3  we have: 
3

5
, 

11

19
, 

41

71
, i.e., the ratio of the areas are:  

25 : 9, 361 : 121, 5041 : 1681 .  

 A 4.7:  

Dadurch, dass der Mittelpunkt der Kreise jeweils verschoben ist, nimmt die Möglichkeit ab, die Radien 
miteinander zu vergleichen. 

The fact that the centres of the circles are shifted reduces our chances of comparing the radii. 

 A 4.8: 

(1) Shown are circular rings with r = 1 and r = 2, i.e. Ayellow = 1 and Agreen = Alight blue = Ablue = (3)/3 = 1 

It could also be that multiples of the radii were used for the picture, for example  
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r = 2 and r = 4: Ayellow = (1 + 3) ∙  = 4 and Agreen = Alight blue = Ablue = (5 + 7)/3 = (12)/3 = 4 

The same applies to the following illustrations. 

(2) Apink = 1; Ablue-violet = (5)/5 = 1 

(3) Ared = 1; Apink = (7)/7 = 1   

(4) Ayellow = 1 + 3 = 4; Alight blue = (7 + 9)/4 = 4 

(5) Apink = 1;  Ablue/golden = (3 + 5)/8 = 1 

(6) Ablue = 3 + 5 = 8; Ablue-grey = (7 + 9 + 11 + 13)/5 = 8 

(7) Aorange = 3; Abrown = (7 + 9 + 11)/9 = 3 

(8) Aolive = 5 + 7 = 12; Agreen = (9 + 11 + 13 + 15)/4 = 12 

 A 4.9:   

• Figure 1: The total area of 49 colored orange. 

• Figure 2: The green colored area has the same size as the light blue colored area: 

 ½ ∙ (1 + 3 + 5 + 7 + 9 + 11 + 13) = ½ ∙ 49 = 24,5 ∙  

• Figure 3: green = violet: ½ ∙ (1 + 5 + 7 + 11 + 13) = ½ ∙ 37 = 18,5 ∙  

blue-green: 3 + 9 = 12 

• Figure 4: yellow = orange: ½ ∙ (1 + 7 + 9) = ½ ∙ 17 = 8,5 ∙  

red = pink: ½ ∙ (3 + 5 + 11 + 13) = ½ ∙ 32 = 16 

• Figure 5: red = orange: ½ ∙ (1 + 9 + 11) = ½ ∙ 21 = 10,5∙  

pink = yellow: ½ ∙ (3 + 7 + 13) = ½ ∙ 23 = 11,5 ∙  

brown: 5 

• Figure 6: grey = blue-violet: ½ ∙ (1 + 11 + 13) = ½ ∙ 25 = 12,5 ∙  

blue = purple: ½ ∙ (3 + 9) = ½ ∙ 12 = 6 

hellblau = rot : ½ ∙ (5 + 7) = ½ ∙ 12 = 6 

• Figure 7: light blue = blue-violet: ½ ∙ (1 + 13) = ½ ∙ 14 = 7 

green = purple: ½ ∙ (3 + 11) = ½ ∙ 14 = 7 

yellow = red: ½ ∙ (5 + 9) = ½ ∙ 14 = 7 

orange: 7 

• Figure 8: brown = blue-violet: ½ ∙ 1 = 0,5 ∙  

pink = blue-grey: ½ ∙ (3 + 13) = ½ ∙ 16 = 8 

yellow = light blue: ½ ∙ (5 + 11) = ½ ∙ 16 = 8 

orange = green: ½ ∙ (7 + 9) = ½ ∙ 16 = 8 

• Figure 9: blue = brown: ½ ∙ 1 = 0,5 ∙  

blue-violet = orange: ½ ∙ 3 = 1,5 ∙  

grey = red: ½ ∙ (5 + 13) = ½ ∙ 18 = 9 

green = purple: ½ ∙ (7 + 11) = ½ ∙ 18 = 9 

light blue: 9 

 

 A 4.10:  

a)  
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b)  

    

   

c) 

     

  

 

 A 4.11:  And what other patterns did you discover? 

 

 A 4.12:  

 

With the help of  sin() = (R – r)/e the angle can be determined from the given values of r, R and e. The total 

length u of the path results from the lengths of the arcs on the two circles and the two straight lines of length 

x. The length x can be calculated using the Pythagorean theorem or with: cos() = x/e: 
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 A 4.13:  

 

We indicate half of the angle of intersection (between the tangents) by  

For given radii r and R and the distance e = e1 + e2 between the centres, the following relationships results: 

e

rR +
=)sin(  ; from this  can be determined. Further applies: 

x

rR +
=)tan( .  

From this follows: 
)tan(

rR
x

+
= , so for the length u of the raceway 









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2

360

)2180(2

360

)2180(2

)tan(
2









rR

rRRrrR
u  

The middle of several tracks is determined by the radii r and R and the distance e. Therefore the track which 

lies inside on the left side will have the radius r – d, and on the right side the radius is R + d, where d is the 

distance between the centre lines of the track. The distance e between the centres of the circles and the 

angle of intersection remain the same. Therefore the lengths of the two path are equal. (The same applies to 

the outer path on the left / inner path on the right). 

If the sum R + r is replaced by e ∙ sin() in the expression for u, we have 
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
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e
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If one would set up such a track in a typical stadium with a 400 m track (r = R = 36.80 cm, e = 84.40 m), then 

  60.7° and the running track would have a length of about 470 m. 
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Chapter 6 

 

 A 6.1:   

The integer coordinates of the intersection points result from the three figures with grid lines. 

         

areas:  

orange: 600 area units, gelb: 180 (each); light green: 240 (each);  
blue-green 90 (each); dark green: 30 (each). 

In the figure there are several rectangular triangles of different sizes: 

• yellow colored triangles: hypotenuse: 30, other sides: 512   and 56    

and two triangles, which are similar to these: 

• vertices (0,0); (60,0) and (48,24): 

hypotenuse: 60, other sides: 524   and 512    

• vertices (0,0), (60,0) und (60,30): 

hypotenuse: 530  , other sides: 60 and 30 

Further the rectangular triangle with the vertices (0,0) ; (24,48) and (60,30): 

• hypotenuse: 530  , other sides: 518   and 524   (ratio: 3:4:5) 

and the triangle which is similar with the vertices (0,0) ; (30,15) and (12,24) 

• hypotenuse: 515  , other sides: 512   and 518    

and the dark green colored triangles 

• hypotenuse: 55  , other sides: 53   and 54    

and the blue-green colored quadrilateral together with the dark-green colored triangle form a rectangular 
triangle which is similar with  

•  hypotenuse: 510  , other sides: 56   and 58    
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 A 6.2:   

 

The grid lines divide the basic sides of the square into 12 or 13 equally sized segments. Therefore it makes 
sense to choose a length 12 ∙ 13 = 156 for the square sides. 

However, not all intersection points have integer coordinates. For example, you can find further intersection 
points on grid lines if you divide the basic sides of the square into 10 equally sized segments. 

The red marked intersection point in the figure on the right has the coordinates (208/3 , 52), the green 
marked point has the coordinates (260/3 , 52). 
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Chapter 7 

 

 A 7.1:  

• Check of the final digits: 58² has the same final digits as 8² = 64. 

• Method 1 (stepwise calculation)  

Starting with: 55² = 50 · 60 + 5² = 3025 

58² = 55² + (55 + 56) + (56 + 57) + (57 + 58) = 55² + 6 · 56,5 = 3025 + 339 = 3364 

 Hint: 56,5 is the mean value of the six summands. 

Starting with: 60² = 3600 

58² = 60² – (60 + 59) – (59 + 58) = 60² – 4 · 59 = 3600 – 236 = 3364 

 Hint: 59 is the mean value of the four summands. 

• Method 2 (calculation using equidistant numbers – a number of tens and a symmetrical partner)   

58² = (60 – 2) ∙ (56 + 2) = 60 ∙ 56 + 2² = 3360 + 4 = 3364 

58² = (50 + 8) ∙ (66 – 8) + 8² = 50 ∙ 66 + 8² = 3300 + 64 = 3364 

• Method 3 (applying the 1st binomial formula)    

58² = (50 + 8)² = 50² + 2 ∙ 50 ∙ 8 + 8² = 50 ∙ (50 + 2 ∙ 8) + 8² = 50 ∙ 66 + 8² = 3300 + 64 = 3364 

58² = (60 – 2)² = 60² – 2 ∙ 60  2 + 2² = 60 ∙ (60 – 2 ∙ 2) + 2² = 60 ∙ 56 + 4 = 3360 + 4 = 3364 

 

• Check of the final digits: 84² has the same final digits as16² = 256. 

• Method 1 (stepwise calculation)  

Starting with: 85² = 80 · 90 + 5² = 7225 

84² = 85² – (85 + 84) = 85² – 2 · 84,5 = 7225 – 169 = 7056 

Starting with: 80² = 6400 

84² = 80² + (80 + 81) + (81 + 82) + (82 + 83) + (83 + 84) = 80² + 8 · 82 = 6400 – 656 = 7056 

• Method 2 (calculation using equidistant numbers – a number of tens and a symmetrical partner)   

84² = (80 + 4) ∙ (88 – 4) = 80 ∙ 88 + 4² = 7040 + 16 = 7056 

84² = (90 – 6) ∙ (78 + 6) + 6² = 90 ∙ 78 + 6² = 7020 + 36 = 7056 

Method 3 (applying the 1st binomial formula)    

84² = (80 + 4)² = 80² + 2 ∙ 80 ∙ 4 + 4² = 80 ∙ (80 + 2 ∙ 4) + 4² = 80 ∙ 88 + 4² = 7040 + 16 = 7056 

84² = (90 – 6)² = 90² – 2 ∙ 90 ∙ 6 + 6² = 90 ∙ (90 – 2 ∙ 6) + 6² = 90 ∙ 78 + 6² = 7020 + 36 = 7056 

 

• Check of the final digits: 73² has the same final digits as 23² = 529. 

• Method 1 (stepwise calculation)  

Starting with: 75² = 70 · 80 + 5² = 5625 

73² = 75² – (75 + 74) – (74 + 73) = 75² – 4 · 74 = 5625 – 296 = 5329 

Starting with: 70² = 4900 

73² = 70² + (70 + 71) + (71 + 72) + (72 + 73) = 70² + 6 · 71,5 = 4900 + 429 = 5329 

• Method 2 (calculation using equidistant numbers – a number of tens and a symmetrical partner)   

73² = (70 + 3) ∙ (76 – 3) = 70 ∙ 76 + 3² = 5320 + 9 = 5329 

73² = (80 – 7) ∙ (66 + 7) + 7² = 80 ∙ 66 + 7² = 5280 + 49 = 5329 
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Method 3 (applying the 1st binomial formula)    

73² = (70 + 3)² = 70² + 2 ∙ 70 ∙ 3 + 3² = 70 ∙ (70 + 2 ∙ 3) + 3² = 70 ∙ 76 + 3² = 5320 + 9 = 5329 

73² = (80 – 7)² = 80² – 2 ∙ 80 ∙ 7 + 7² = 80 ∙ (80 – 2 ∙ 7) + 7² = 80 ∙ 66 + 7² = 5280 + 49 = 5329 

 

 A 7.2: 

(1)  mod 19 

 

and furthermore: 

    

  

(2)  mod 23 

 

 

and furthermore: 

 

 

 

 

 

 

 



Heinz Klaus Strick: Mathematics is beautiful, Springer, ISBN: 978-3-662-59060-7 

Solutions for ”Mathematics is beautiful” – page 44 / 119 

(3) mod 25 

 

and furthermore: 

   

 

(4) mod 27 

 

and furthermore: 
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 A 7.3: 
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 A 7.4  

(1) 

  

        

(2) 

                  

(3) 
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(4) 

  

(5) 

 

(6) 
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Chapter 8 

 

 A 8.1:   

      

 A 8.2: 

When the white rectangle is divided by vertical lines into three parts, the red and blue colored areas "grow" 

together continuously. 

 A 8.3:   

Fig. on the left: The initial square was halved by a diagonal and one half was colored green, then the 

uncolored isosceles right-angled triangle was halved by the axis of symmetry and one half was colored 

yellow. In the following steps the uncolored triangle was halved and one of the triangles was colored 

alternately yellow and green. So we have 

...
32

1

8

1

2

1
+++=greenA   and  greenyellow AA =








+++=+++=

2

1
...

32

1

8

1

2

1

2

1
...

64

1

16

1

4

1
 

Abb. rechts: Wie bei der Abb. in der Mitte wird zunächst das Ausgangsquadrat durch die beiden Diagonalen 

in vier gleichschenklig-rechtwinklige Dreiecke unterteilt. Die Färbung erfolgt aber in beiden Hälften jeweils 

entgegengesetzt. Daher ist die Quadratfläche jeweils zur Hälfte grün bzw. gelb gefärbt. 

From this it follows that two thirds of the square is coloured green, one third yellow. 

Fig. in the centre: In the first step the initial square is divided by the two diagonals into four isosceles right-

angled triangles, two of which are colored green. The other two triangles are each halved by the axes of 

symmetry, one half of which is coloured yellow. From this it follows, as in the 1st figure, that two thirds of the 

square is colored green, one third yellow. 

Fig. on the right: As in the middle figure, the initial square is first divided by the two diagonals into four 

isosceles right-angled triangles. However, the coloring is opposite in both halves. Therefore half of the 

square is colored green and half is colored yellow. 

 A 8.4:   

When we indicate the side length with a then we following applies for the area: 

3
4

²
3

22

1

2

1
===

aa
ahaA .  

From A = 1 it follows 
3

4
² =a , also  

4 3

2

3

2
==a   1.52 

 

zu A 8.5:  

       

 A 8.6:  
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Since the outer triangle is 4 times as large as the inner triangle, the side length of the inner triangle is  

4

1 - times as large, i.e. ½ times as large as the outer triangle. So you draw the three outer symmetrical 

trapezoids with the parallel sides of length a and ½ ∙ a and the base angle of 30°.  

The oblique sides of the outer trapezoids are half as long as the distance of a vertex from the centre of the 

triangle (this is 2/3 times the altitude of the equilateral triangle), i.e. for the outer trapezoids this is 

3
3

3
3

23

2 aaa
== , and for the next trapezoids this is half the length of the next outer trapezoid. 

 

 A 8.7:  

An equilateral triangle is divided into four equally sized areas in such a way that three congruent trapezoids 

are created on the outside and an equilateral triangle on the inside. As the outer triangle should be 4 times 

as large as the inner triangle, the side length of the inner triangle is 
4

1 -times as large, i.e. ½ times as large 

as the outer triangle.  

When we indicate the side length of the initial triangle with a, then in the first step the trapezoids have basic 

sides with the length a – s (bottom) and ½ ∙ a + s (top) and two legs with the length s. Since the legs form an 

angle of 60° with the lower base, the following applies: 

½ ∙ a + s = a – 2s, i.e. s = 0.2 ∙ a.  

The lower base of the trapezoid therefore has the length 0.8 ∙ a, the upper 0.7 ∙ a, the legs 0.2 ∙ a. 

 

 A 8.8: 

The first picture shows a square which is divided into five equally sized areas. If the side length of the square 
is a1 = 1, the area of the square is 1.  

The square in the middle of the figure then has a side length of    2

1
0.4472

5
a =  . 

For the four rectangles with the side lengths b2 and c2 the following applies:  

b2 + c2 = 1 and b2 · c2 = 1/5, i. e. 

2

2
5

1

c
b =   and therefore 1

5

51

5

1

2

2

2
2

2

22 =
+

=+=+
c

c
c

c
cb  

This leads to the quadratic equation: 5c2² – 5c2 + 1 = 0. 

This has two positive solutions, namely c2  0.2764  and  c2  0.7236.. 

Because b2 + c2 = 1, the following applies: b2  0.7236  and  b2  0.2764   

For the four rectangles enclosed in the square with the side length 2

1
0.4472

5
a =   and the square in the 

middle, the following applies: 
5

1

5

1
2

3 =













=a  and further: 

c3  0.2764 · 0.4472  0.1236 and b3  0.7236 · 0.4472  0.3236 

We get the side length of the next figure by multiplying with 0.4472. 

etc. 
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 A 8.9:  

The lower base of the initial square is divided with the ratio 2 : 1 : 2. The left and right rectangles are each 

halved in the middle and the resulting four rectangles of equal size are colored in four colors.  

The uncolored rectangle in the center is vertically divided with the ratio 2 : 1 : 2. The upper and lower 

rectangles are each divided lengthwise in the middle and the resulting four equal-sized rectangles are 

colored in four colors (as their neighbouring rectangles).  

These two steps are repeated for the remaining uncoloured square in the middle. 

 A 8.10:  

Since the outer square should be 5 times as large as the inner square, the side length of the inner square is  

5

1 - times as large as the outer square. The trapezoids therefore have basic sides of lengths a and (approx.) 

0.447 ∙ a. The altitude h of the trapezoids must fulfil the condition h + 0.447 ∙ a + h = a, i.e. h  0.276 ∙ a.  

It follows that the legs, which form an angle of 45° and 135° with the two base sides, have a length of  

s = h2  0.391 ∙ a. 

 A 8.11:   

Since the outer square (with side length a) should be 5 times as large as the inner square, the side length of 

the inner square is 
5

1 - times as large as the outer square, i.e. about 0.447 ∙ a. This inner square has 

diagonals which are 2 -times as large as the side of this square, so they have a length of about 0.632 ∙ a.  

A partition of the initial square can therefore be performed as follows: The square is first divided into four 

equal squares by the two center lines. From the center of the figure, you measure half of 0.632 ∙ a, i.e. a 

distance of 0.316 ∙ a. 

The four pentagons located in the vertices of the initial square thus have two sides of length 0.5 ∙ a, which 

are perpendicular to each other, two sides of length 0.5 ∙ a – 0.316 ∙ a = 0.184 ∙ a and the base side of the 

inner square with a length of 0.447 ∙ a.  

 

Appendix to ch. 8.5: Calculation of the side length of the regular pentagon (2nd method) 

Since the outer pentagon should be 6 times as large as the inner pentagon, the side length of the inner 

pentagon is 
6

1 - times as large as the outer pentagon. 

The area of a regular 5-sided polygon with side length a1 = 1 can be calculated as follows: 

)36tan(4

5

)36tan(22

5

2

1
5

2

11
1111


=


==

aa
ahaA .  

As a1 = 1, this means: A1  1,7205. 

Thus the inner pentagon has the area 
)36tan(24

5 2

1
2


=

a
A .     

This is also the area of the five symmetrical trapezoids. These trapezoids consist of a rectangle with the side 

lengths x (=upper side of the trapezoid) and y (= altitude of the trapezoid) and two right-angled triangles with 

the sides y and z; the hypotenuse of the right-angled triangle forms together with the upper side of the 

trapezoid a base side of the initial pentagon. 

 

 

Therefore the area of a trapezoid is 
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yzxyzyxA +=+= )(
2

1
22

 

Since y = (1 – x) · sin(72°) and z = (1 – x) · cos(72°) we have further 

    )72sin()1()72cos()72cos()72sin()1()72cos()1(2 −−+=−−+= xxxxxxA  

The following equation must be solved by CAS 

 
)36tan(24

5
)72sin()1()72cos()72cos(


=−−+ xxx  

Thus we get: x  0.5718 and from this y  0.4072 and z  0.1323.  

We get the side lengths of the next figure by multiplication with 
1

0.4082
6
 . 

 

 A 8.12:  

Upper pictures: Since the radius is halved, the remaining yellow colored area covers a quarter of the total 

area of the octagon, i.e., for the light blue colored area of step 1 we have OctagonAA =
4

3
1  and further for the 

green octagon, which covers three quarters of the remaining yellow-colored area: 

OctagonOctagon AAA ==
16

3

4

1

4

3
2 . Before we start step 3, one quarter of one quarter of the octagon is still 

yellow. In step 3, three quarters of it is then colored dark green: OctagonOctagon AAA ==
64

3

4

1

4

1

4

3
3  

After an infinite number of steps, the whole area is colored:  

1

4

3

1

4

3

4

1
1

1

4

3
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−
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






+++=+++ . 

Illustrations below: Since the radius is divided by 3, the remaining yellow colored area covers one third of the 

total area of the octagon, i.e. the light blue colored area of the 1st step: OctagonAA =
3

2
1  and further for the 

purple-colored octagon, which occupies two thirds of the remaining yellow-colored area: 

OctagonOctagon AAA ==
9

2

3

1

3

2
2  .  

Before we start step 3, one third of one third of the octagonal area is still yellow. In step 3, two thirds of it is 

then coloured pink: OctagonOctagon AAA ==
27

2

3

1

3

1

3

2
3  

After an infinite number of steps, the whole area is colored. 

 A 8.13:  

• Trisection of the circle 
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The area of a circular segment can be calculated as difference between the area of the sector and the area 

of the isosceles triangle below the chord. Because of sin() = s/2r and cos() = h/r the following applies 

)]cos()sin(
180

[²)cos()sin(
180

²
2

1

180
² 








 −


=−


=−


= rrrrhsrA segmentcircular  

Since the three colored parts of the circle each have the area 1/3 ∙  ∙ r², the following equation must be 

solved: 
3

)cos()sin(
180





 =−


  

The solution is 74.64°. From this follows: s  1.929 ∙ r and h  0.265 ∙ r. Because of the figure’s symmetry. 

this also applies to the lower circular segment. 

The three layers therefore have the heights 0.735 ∙ r and 0.530 ∙ r and 0.735 ∙ r. 

(Control: the sum is 2r.) 

• Partition of the circle into four layers 

The circle is divided into two halves by a diameter. Here, analogously to above, the equation 

4
)cos()sin(

180





 =−


   must be solved. The solution is   66.17° and from this we get  

s  1,830 ∙ r and h  0,404 ∙ r. 

The four layers therefore have the heights 0.596 ∙ r and 0.404 ∙ r and 0.404 ∙ r and 0.596 ∙ r. 

• Partition of the circle into five layers 

Analogously to above, the following equations must be solved 

5
)cos()sin(

180





 =−


   and  

5

2
)cos()sin(

180





 =−


   

to determine the area of the the two upper layers: 

From   60.54° it follows: s  1.74 ∙ r and h  0.492 ∙ r. And from   80.92° it follows: s  1.97 ∙ r and  

h  0.158 ∙ r. 

Therefore the five layers of the circle have the heights: 

0.508 ∙ r, 0.334 ∙ r, 0.316 ∙ r, 0.334 ∙ r and 0.508 ∙ r.   

• Partition of the regular pentagon 

   

A regular pentagon with side length a consists of five symmetric triangles. The altitude H of these triangles 

can be calculated by tan(36 )
2 2 tan(36 )

a a
H

H
 =  =

 
, so the area of the regular pentagon is 

5
5 ² 1.7205 ²

2 2 tan(36 ) 4 tan(36 )
Pentagon

a a
A a a=   =   

   
. 

The lower part of the pentagon is a trapezoid formed by three sides of the pentagon and a diagonal d. This 
diagonal d can be calculated as follows (see central figure): 

d = a + 2 ∙ b = a + 2 ∙ a ∙ sin(18°) = a ∙ (1 + 2 ∙ sin(18°))  1.618 ∙ a 

It could also be calculated using d = 2a ∙ sin(54°). 
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The altitude of the trapezoid is: h = a ∙ cos(18°) ≈ 0.951a; therefore the area of the trapezoid is calculated as 
follows: 

1 1
2 2

2 2

( ) ( (1 2 sin(18 ))) cos(18 )

cos(18 ) (1 sin(18 )) 1.2449

trapezoidA a d h a a a

a a

=  +  =  +  +     

=    +   
 

The area of the trapezoid is approximately 72.4 % of the total area of the regular pentagon; therefore, we 
can conclude, that the bisecting line of the pentagon lies below the diagonal. 

• Bisection of the pentagon (is needed above) 

  

If you draw a parallel to the diagonal, a trapezoid is created whose area is calculated as follows: 

))18sin(1()18cos(²

)18cos()18sin(²²)18cos(²
2

1
2

+=

+=+=

kka

kakayxyaA
  

The resulting distances can be calculated as follows (according to the intercept theorem):   

k = y : h = x : b 

We search the value of the ratio k that fulfills the following equation: 

 ²
)36tan(4

5

2

1
))18sin(1()18cos(² akka 


=+  

With the aid of CAS we find the solution: k ≈ 0.737 and with this we get the altitude of the new trapezoid  

y  = k · a · cos(18°) ≈ 0.701 · a 

• Partition of the pentagon into three layers 

In order to determine the lower line for the partition, one must solve the equation 

²
)36tan(4

5

3

1
))18sin(1()18cos(² akka 


=+   

From the solution k ≈ 0.520 we get y ≈ 0.495 ∙ a. 

Analogously we get the upper line from ²
)36tan(4

5

3

2
))18sin(1()18cos(² akka 


=+  

with the solution k ≈ 0.936 and thus y ≈ 0.890 · a. 

• Partition of the pentagon into four layers 

In order to determine the lower line for the partition, one must solve the equation 

²
)36tan(4

5

4

1
))18sin(1()18cos(² akka 


=+  

From the solution k ≈ 0.402 we get y ≈ 0.383 · a. 

The second line was calculated below as a bisecting line.  

The upper line of the partition lies above the diagonal parallel to the base side.  

The isosceles triangle has d as base and legs of side length a.  
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The area of the triangle results from the area calculated above: 

Atriangle = Apentagon – Atrapezoid = 1.7205 ∙ a² – 1.2449 ∙ a² = 0.4756 ∙ a² 

Since the diagonal has the length d  1.618 ∙ a, we can calculate the altitude from the area: 

2 ∙ 0.4756/1.618  0.588 ∙ a. 

Since the upper quarter of the pentagon has an area of 1.7205 ∙ a²/4  0.4301 ∙ a², 90.43 %  

(0.4301/0.4756  0.9043) of the area above the diagonal is colored yellow.  

Since the yellow colored triangle is similar to the triangle above the diagonal, the base of the yellow colored 

triangle has a length of 0.9043 1.618 1.539a a     and the altitude a length of 

0.9043 0.588 0.559a a    . 

 

• Partition of the regular hexagon 

A regular hexagon with side length s is consists of six equilateral triangles. In order to divide the hexagon 

into three layers of equal size, a rectangle must be drawn in the middle, the width b of which is just twice the 

altitude of the triangles of the hexagon and the area A of which is equal to one third of the area of the regular 

hexagon: 

( )
=

30tan

s
b   and  

( )
==

30tan2

²

3
6 sA

A .  

The altitude x of the rectangle in the middle can thus be calculated by 

( ) 2

)30tan(

30tan2

² s

s

s

b

A
x =





==  

To divide a regular hexagon into four layers of equal area, one must draw a rectangle in the middle whose 

width b is just twice the altitude of the above-mentioned triangles of the hexagon and whose area A is equal 

to a quarter of the area of the regular hexagon: 

( )
=

30tan

s
b   und  

( )


==

30tan8

²3

4
6 sA

A .  

The altitude x of the rectangle in the middle can thus be calculated by  

( )
s

s

s

b

A
x =







==

8

3)30tan(

30tan8

²3
 

To divide the hexagon into five layers you get analogously for the altitude x of the rectangle:  

( )
s

s

s

b

A
x =







==

10

3)30tan(

30tan10

²3
.  
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Chapter 9 

The following table contains the representation in the ternal system and in the balanced ternal system for all 

natural numbers between 1 and 121. For the natural numbers highlighted in green in the table, no 

compensation is required on the other weighing pan. The number of weights required for weighing can be 

seen in the last column. For 5 of the 121 numbers (object’s weights) considered 1 balance weight is 

sufficient, for 20 numbers you need 2 balance weights, for 40 numbers 3 balance weights are required, also 

4 balance weights for another 40 numbers, and for 16 numbers all 5 weights are required. 

 

Number in 

the decimal 

system 

Number in the  

ternal system 

Number in the  

balanced ternal system 

Number of balance 

weights needed 

1 0 0 0 0 1 0 0 0 0 1 1 

2 0 0 0 0 2 0 0 0 1 -1 2 

3 0 0 0 1 0 0 0 0 1 0 1 

4 0 0 0 1 1 0 0 0 1 1 2 

5 0 0 0 1 2 0 0 1 -1 -1 3 

6 0 0 0 2 0 0 0 1 -1 0 2 

7 0 0 0 2 1 0 0 1 -1 1 3 

8 0 0 0 2 2 0 0 1 0 -1 2 

9 0 0 1 0 0 0 0 1 0 0 1 

10 0 0 1 0 1 0 0 1 0 1 2 

11 0 0 1 0 2 0 0 1 1 -1 3 

12 0 0 1 1 0 0 0 1 1 0 2 

13 0 0 1 1 1 0 0 1 1 1 3 

14 0 0 1 1 2 0 1 -1 -1 -1 4 

15 0 0 1 2 0 0 1 -1 -1 0 3 

16 0 0 1 2 1 0 1 -1 -1 1 4 

17 0 0 1 2 2 0 1 -1 0 -1 3 

18 0 0 2 0 0 0 1 -1 0 0 2 

19 0 0 2 0 1 0 1 -1 0 1 3 

20 0 0 2 0 2 0 1 -1 1 -1 4 

21 0 0 2 1 0 0 1 -1 1 0 3 

22 0 0 2 1 1 0 1 -1 1 1 4 

23 0 0 2 1 2 0 1 0 -1 -1 3 

24 0 0 2 2 0 0 1 0 -1 0 2 

25 0 0 2 2 1 0 1 0 -1 1 3 

26 0 0 2 2 2 0 1 0 0 -1 2 

27 0 1 0 0 0 0 1 0 0 0 1 

28 0 1 0 0 1 0 1 0 0 1 2 

29 0 1 0 0 2 0 1 0 1 -1 3 

30 0 1 0 1 0 0 1 0 1 0 2 

31 0 1 0 1 1 0 1 0 1 1 3 

32 0 1 0 1 2 0 1 1 -1 -1 4 

33 0 1 0 2 0 0 1 1 -1 0 3 
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34 0 1 0 2 1 0 1 1 -1 1 4 

35 0 1 0 2 2 0 1 1 0 -1 3 

36 0 1 1 0 0 0 1 1 0 0 2 

37 0 1 1 0 1 0 1 1 0 1 3 

38 0 1 1 0 2 0 1 1 1 -1 4 

39 0 1 1 1 0 0 1 1 1 0 3 

40 0 1 1 1 1 0 1 1 1 1 4 

41 0 1 1 1 2 1 -1 -1 -1 -1 5 

42 0 1 1 2 0 1 -1 -1 -1 0 4 

43 0 1 1 2 1 1 -1 -1 -1 1 5 

44 0 1 1 2 2 1 -1 -1 0 -1 4 

45 0 1 2 0 0 1 -1 -1 0 0 3 

46 0 1 2 0 1 1 -1 -1 0 1 4 

47 0 1 2 0 2 1 -1 -1 1 -1 5 

48 0 1 2 1 0 1 -1 -1 1 0 4 

49 0 1 2 1 1 1 -1 -1 1 1 5 

50 0 1 2 1 2 1 -1 0 -1 -1 4 

51 0 1 2 2 0 1 -1 0 -1 0 3 

52 0 1 2 2 1 1 -1 0 -1 1 4 

53 0 1 2 2 2 1 -1 0 0 -1 3 

54 0 2 0 0 0 1 -1 0 0 0 2 

55 0 2 0 0 1 1 -1 0 0 1 3 

56 0 2 0 0 2 1 -1 0 1 -1 4 

57 0 2 0 1 0 1 -1 0 1 0 3 

58 0 2 0 1 1 1 -1 0 1 1 4 

59 0 2 0 1 2 1 -1 1 -1 -1 5 

60 0 2 0 2 0 1 -1 1 -1 0 4 

61 0 2 0 2 1 1 -1 1 -1 1 5 

62 0 2 0 2 2 1 -1 1 0 -1 4 

63 0 2 1 0 0 1 -1 1 0 0 3 

64 0 2 1 0 1 1 -1 1 0 1 4 

65 0 2 1 0 2 1 -1 1 1 -1 5 

66 0 2 1 1 0 1 -1 1 1 0 4 

67 0 2 1 1 1 1 -1 1 1 1 5 

68 0 2 1 1 2 1 0 -1 -1 -1 4 

69 0 2 1 2 0 1 0 -1 -1 0 3 

70 0 2 1 2 1 1 0 -1 -1 1 4 

71 0 2 1 2 2 1 0 -1 0 -1 3 

72 0 2 2 0 0 1 0 -1 0 0 2 

73 0 2 2 0 1 1 0 -1 0 1 3 

74 0 2 2 0 2 1 0 -1 1 -1 4 

75 0 2 2 1 0 1 0 -1 1 0 3 

76 0 2 2 1 1 1 0 -1 1 1 4 

77 0 2 2 1 2 1 0 0 -1 -1 3 
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78 0 2 2 2 0 1 0 0 -1 0 2 

79 0 2 2 2 1 1 0 0 -1 1 3 

80 0 2 2 2 2 1 0 0 0 -1 2 

81 1 0 0 0 0 1 0 0 0 0 1 

82 1 0 0 0 1 1 0 0 0 1 2 

83 1 0 0 0 2 1 0 0 1 -1 3 

84 1 0 0 1 0 1 0 0 1 0 2 

85 1 0 0 1 1 1 0 0 1 1 3 

86 1 0 0 1 2 1 0 1 -1 -1 4 

87 1 0 0 2 0 1 0 1 -1 0 3 

88 1 0 0 2 1 1 0 1 -1 1 4 

89 1 0 0 2 2 1 0 1 0 -1 3 

90 1 0 1 0 0 1 0 1 0 0 2 

91 1 0 1 0 1 1 0 1 0 1 3 

92 1 0 1 0 2 1 0 1 1 -1 4 

93 1 0 1 1 0 1 0 1 1 0 3 

94 1 0 1 1 1 1 0 1 1 1 4 

95 1 0 1 1 2 1 1 -1 -1 -1 5 

96 1 0 1 2 0 1 1 -1 -1 0 4 

97 1 0 1 2 1 1 1 -1 -1 1 5 

98 1 0 1 2 2 1 1 -1 0 -1 4 

99 1 0 2 0 0 1 1 -1 0 0 3 

100 1 0 2 0 1 1 1 -1 0 1 4 

101 1 0 2 0 2 1 1 -1 1 -1 5 

102 1 0 2 1 0 1 1 -1 1 0 4 

103 1 0 2 1 1 1 1 -1 1 1 5 

104 1 0 2 1 2 1 1 0 -1 -1 4 

105 1 0 2 2 0 1 1 0 -1 0 3 

106 1 0 2 2 1 1 1 0 -1 1 4 

107 1 0 2 2 2 1 1 0 0 -1 3 

108 1 1 0 0 0 1 1 0 0 0 2 

109 1 1 0 0 1 1 1 0 0 1 3 

110 1 1 0 0 2 1 1 0 1 -1 4 

111 1 1 0 1 0 1 1 0 1 0 3 

112 1 1 0 1 1 1 1 0 1 1 4 

113 1 1 0 1 2 1 1 1 -1 -1 5 

114 1 1 0 2 0 1 1 1 -1 0 4 

115 1 1 0 2 1 1 1 1 -1 1 5 

116 1 1 0 2 2 1 1 1 0 -1 4 

117 1 1 1 0 0 1 1 1 0 0 3 

118 1 1 1 0 1 1 1 1 0 1 4 

119 1 1 1 0 2 1 1 1 1 -1 5 

120 1 1 1 1 0 1 1 1 1 0 4 

121 1 1 1 1 1 1 1 1 1 1 5 
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Chapter 10 

 

 A 10.1:   

The description can be done as in general terms in section 10.3. The angle depends on the number n. 

 A 10.2:  

     

 A 10.3:   

The tessellation of type 1 or type 4 or type 2 or type 5 are obtained again. 

 A 10.4:   

For the tessellation of the regular hexagon, three rhombi of the same type are used; there is no symmetrical 

partial area (except the area itself) that could be rotated. 

Although the regular octagon has symmetrical partial areas that could be rotated, but the figure created after 

rotation is identical to the original figure. 

 A 10.5:  

In the following illustrations, it is highlighted in color which areas have been rotated: 

from the tessellation in picture 1 to picture 2 

   

from the tessellation in picture 2 to picture 3 

   

from the tessellation in picture 3 to picture 4 

   

from the tessellation in picture 4 to picture 5 
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from the tessellation in picture 5 to picture 6 

   

from the tessellation in picture 6 to picture 7 

   

from the tessellation in picture 7 to picture 8 

   

 

 

 A 10.6:  

If the rhombi are layed out from the centre at an acute angle of 180°/9 = 20° or 180°/10 = 18°, a centrally 

symmetrical tessellation of a figure is achieved: in the first case it is a regular 18-sided polygon, but in the 

second picture it is a regular 10-sided polygon. 

    

 A 10.7:   

The tessellation starts with n rhombi (n = 5, 6, 7, 8) with acute angles of 360°/n. Two diamonds of the same 

type are then placed on each of these n diamonds (i.e. a total of 2n rhombi) and a further rhombus of the 

same type fits into the gap between two diamonds. Thus a total of 4n diamonds with an acute angle of 

360°/n are required. 
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Chapter 11 
 
 A 11.1:  

To an area of A = 8 two rectangles exist 

with p = 8 + 1 + 8 + 1 = 2 ∙ (8 + 1) = 18 and  

with p = 4 + 2 + 4 + 2 = 2 ∙ (4 + 2) = 12.  

 

To an area of A = 9 two rectangles exist 

with p = 9 + 1 + 9 + 1 = 2 ∙ (9 + 1) = 20 and  

with p = 3 + 3 + 3 + 3 = 2 ∙ (3 + 3) = 12.  

 

To an area of A = 10 two rectangles exist 

with p = 10 + 1 + 10 + 1 = 2 ∙ (10 + 1) = 22 and  

with p = 5 + 2 + 5 + 2 = 2 ∙ (5 + 2) = 14.  

 

 A 11.2:  

6 can be related to (1 ; 6) and (2 ; 3) as pairs of divisors, the corresponding perimeters are 14 and 10, 

8 can be related to (1 ; 8) und (2 ; 4), the corresponding perimeters are 18 and 12 , 

9 can be related to (1 ; 9) und (3 ; 3), the corresponding perimeters are 20 and 12, 

10 can be related to (1 ; 10) und (2 ; 5), the corresponding perimeters are 22 and 14. 

 A 11.3:  

Since the additional pairs of divisors are involved here, the restrictions must be noted, since the other cases 

are already included. 

 A 11.4:  

In the graphic, the possible rectangles that belong to a certain perimeter are represented; highlighted by a 

square symbol are the rectangles with maximum area that belong to the rectangle perimeters that are 

divisible by 4, i.e. that they belong to a square. 

 A 11.5:  

A maximum of (a – 1) ∙ (b – 1) unit squares at the corners of an ab-rectangle. This is best illustrated by the 

L-shaped figure, which consists of only the first column and the bottom row of the initial rectangle, or by the 

cross-shaped figure, where the figure consists of a + b – 1 unit squares (= a ∙ b – (a – 1) ∙ (b – 1)  

= a + b – 1). 

 A 11.6:  

The following examples show how this can be done:  

If the width a is an odd number, then one can cut out vertically a maximum of  ½ ∙ (a – 1) unit squares, each 

of which has the height b – 1 (amplifying the perimeter by 2 length units each), i.e. the perimeter grows 

all together: (a – 1) ∙ (b – 1) = a ∙ b – a – b + 1. 
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If the width a is an even number, then one can cut out vertically a maximum of ½ ∙ a – 1 uni squares, which 

each have the height b – 1 (amplifying the perimeter by 2 length units each), i.e. together (a – 2) ∙ (b – 1), 

additionally (see the figures on the right) single "cuts" of one unit square are possible, namely for even b  

these are ½ ∙ b –1 unit squares, amplifying the perimeter by b – 2 length units each, for odd b these are  

½ ∙ (b – 1) unit squares, amplifying the perimenter by b – 1 length units each, i.e. the perimeter increases  

- for even b by a maximum of (a – 2) ∙ (b – 1) + (b – 2) = a ∙ b – a – b = (a – 1) ∙ (b – 1) – 1 length units,  

- for odd b by a maximum of (a – 2) ∙ (b – 1) + (b – 1) = (a – 1) ∙ (b – 1) = a ∙ b – a – b + 1 length units. 

In general, the perimeter can be amplified by a maximum of (a – 1) ∙ (b – 1) length units, in case that both a 

and b are even by 1 length unit less. 

 

 

As an alternative to the vertical cuts, one can also consider which spiral-shaped cuts are possible. 

 

 

 A 11.7:  

Inner squares can only be drawn if width a and height b are at least 3 length units each. In each case the 

maximum inner square has the area (a – 2) ∙ (b – 2) square units and the perimeter ist 2 ∙ (a + b – 4). 

 

 A 11.8: 

A = 9, p = 12     A = 8 and (from left to right) p = 12, p = 14, p = 16 

      

A = 7 und p = 12    A = 7 and (from left to right) p = 16, p = 16, p = 14 
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A = 6 and p = 12      A = 6 and p = 14 

 

   

A = 5 and p = 12  

    

 

 A 11.9:  

Figures with perimeter p = 14 and area A = 11 or A = 10  

 

Figures with perimeter p = 14 and area A = 9 or A = 8  
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Figures with perimeter p = 14 and area A = 7   

   

 

Figures with perimeter p = 14 and area A = 6   

      

 

Figures with area A = 11 or A = 10  

 

p = 16  p = 16  p = 18  

p = 16  p = 18  p = 18  

p = 18  p = 18  p = 18  
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Figures with area A = 9 or A = 8 

 

p = 18  p = 20 p = 20 

p = 20  p = 20 p = 20 

p = 18 p = 18  

Figures with area A = 10 or A = 9  

 

p = 16  p = 16  p = 16  

p = 16  p = 16  p = 16  

 

p = 16  p = 16  p = 16  

p = 16  p = 16  p = 16  

Figures with area A = 9 or A = 8 

 

p = 16  p = 16  p = 16  

p = 18  p = 18  p = 18  

 

p = 18  p = 18  p = 18  

p = 16  p = 16  p = 18  
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p = 18  p = 18  p = 18  

p = 16  p = 16  p = 16  

 

p = 16  p = 16  p = 16  

p = 16  p = 16  p = 16  

Figures with area A = 8 or A = 7 

 

p = 18  p = 16  p = 16  

p = 16  p = 16  p = 16  

Figures with area A = 10 or A = 9  

 

p = 18  p = 18  p = 18  

p = 18  p = 20  p = 20  

p = 16  p = 18  p = 18  
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 A 11.10:  

Shown are squares with the areas 

2241142
2

12 =−=−=A ;  5492143
2

12 =−=−=A ;  106163144
2

12 =−=−=A ;  

1312253245
2
12 =−=−=A ; 178254145

2

12 =−=−=A  

These are obtained by cutting off right-angled triangles with side lengths b and a – b at the four vertices of 

the initial square – all in the same way. For the area then results:  
22

2
12 22)(4 babababaA −−=−−=  with 0 < b ≤ a – b < a 

a b a – b A  a b a – b A 

2 1 1 2  8 1 7 50 

3 1 2 5  8 2 6 40 

4 1 3 10  8 3 5 34 

4 2 2 8 = ½ ∙ a²  8 4 4 32 = ½ ∙ a² 

5 1 4 17  9 1 8 65 

5 2 3 13 = ½ ∙ (a² + 1)   9 2 7 53 

6 1 5 26  9 3 6 45 

6 2 4 20  9 4 5 41 = ½ ∙ (a² + 1) 

6 3 3 18 = ½ ∙ a²  10 1 9 82 

7 1 6 37  10 2 8 68 

7 2 5 29  10 3 7 58 

7 3 4 25 = ½ ∙ (a² + 1)  10 4 6 52 

     10 5 5 50 = ½ ∙ a²  

 

 A 11.11:  

 

The inner rectangles are obtained by starting from the initial rectangles with the side lengths a and b and 

then cutting off rectangular triangles with the side lengths c and d and then a – c and b – d twice. For the 

area then results:  cdbcaddbcadcbaA 2)()(22
2

1

2

1 −+=−−−−=  

with 0 < c ≤ a – c < a and 0 < d ≤ b – d < b. 

 

 A 11.12:   

Durch das Anhängen eines Quadrats erhöht sich die Anzahl der Randpunkte um 2 und es kommt kein 

innerer Punkt hinzu. Da die Anzahl der Randpunkte mit ½ multipliziert wird, stimmt die Berechnung des 

Flächeninhalts. 

Adding a square increases the number of boundary points by 2 and no interior point is added. Since the 

number of boundary points is multiplied by ½, the calculation of the area is correct. 
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 A 11.13:  

If squares are added or removed at the boundary, the number of boundary points changes by 2 each time; 

because of the factor ½ for the number of boundary points, this means that the formula applies unchanged. 

When k adjacent squares (k ≥ 2) are added or removed at the boundary, the area is changed by k unit 

squares.  

When removing, the number of interior points decreases by k + 1, but the number of boundary points 

increases by 2: 

Anew = (i – k – 1) + ½ ∙ (b + 2) – 1 = (i + ½ ∙ b  – 1) – k = Aold – k   

When k squares are added, the number of interior points increases by k – 1, and the number of boundary 

points increases by 2: 

Anew = (i + k – 1) + ½ ∙ (b + 2) – 1 = (i + ½ ∙ r  – 1) + k = Aold + k   

 A 11.14:  

In the first example, one boundary point is added, the number of boundary points remains unchanged. The 

area increases by ½. 

In the second example two boundary points are added, the number of boundary points remains unchanged. 

The area increases by 1. 

In the third example no boundary point is added above, but an interior point is added; accordingly the area 

increases by 1, according to the formula. The extension of the figure on the right corresponds to the second 

example. 

 A 11.15: 

First example: One diagonally cut at the top on the right: –1 boundary point. Two diagonal cuts on the right: 

an interior point becomes a boundary point and two boundary points are eliminated.  

In the balance the number of interior points decreases by 1 and the number of boundary points by 2, i.e. 

compared to the initial figure with A = 2 + ½ ∙ 12 – 1 = 7 the modified figure has an area of  

A = 1 + ½ ∙ 10 – 1 = 5.  

Second example: Due to the diagonally cuts, two boundary points are omitted at the top left, three boundary 

points at the top right; one boundary point is omitted at the bottom right, but an inner point becomes an 

boundary point. One boundary point is omitted at the bottom left. Balance: plus 6 boundary points and one 

interior point less: A = 5 + ½ ∙ 18 – 1 = 13, thus we have A = 4 + ½ ∙ 12 – 1 = 9. 

 

 A 11.16:  

   

1 boundary point becomes an interior point, the number of boundary points increases by 3. 

Aleft = 0 + ½ ∙ 8 – 1 = 3; Aright = 1 + ½ ∙ 10 – 1 = 5 

    

3 boundary poits become interior points, the number of boundary increases by 5. 

Aleft = 1 + ½ ∙ 10 – 1 = 5; Aright = 4 + ½ ∙ 12 – 1 = 9 

 



Heinz Klaus Strick: Mathematics is beautiful, Springer, ISBN: 978-3-662-59060-7 

Solutions for ”Mathematics is beautiful” – page 72 / 119 

 A 11.17:   

 

If a right-angled triangle is doubled to a rectangle, then the number of interior points is not only doubled, but 

also k boundary points are added, which on the diagonal:   

irectangle = 2 ∙ itriangle + k  

For the number of boundary points applies: 

brectangle = 2 ∙ (btriangle – 1 – k) 

For a rectangle, the correctness of formula (11.2) was proven. Therefore we have 

 Arectangle = irectangle + ½ ∙ brectangle – 1  

Therefore we get for the triangle which has half of its area: 

Atrangle = ½ ∙ Arectangle = ½ ∙ irectangle + ¼ ∙ brectangle – ½  

 =  itriangle + ½ ∙ k + ½ ∙ rtriangle – ½ – ½ ∙ k  – ½  

 =  itriangle + ½ ∙ briangle – 1    

 

 A 11.18:   

Figure 1:  b1 = 8, i1 = 1, A1 = 1 + ½ ∙ 8 – 1 = 4  and  b2 =14, i2 = 4, A2 = 4 + ½ ∙ 14 – 1 = 10 

2 boundary points coincide, 1 common boundary point becomes an interior point. 

b = b1 + b2 – 4 = 18, i = i1 + i2 + 1 = 6, A = 6 + ½ ∙ 18 – 1 = 14. 

Figure 2:  b1 = 6, i1 = 1, A1 = 1 + ½ ∙ 6 – 1 = 3  and  b2 =14, i2 = 4, A2 = 4 + ½ ∙ 14 – 1 = 10 

2 boundary points coincide, 2 common boundary point become interior points. 

b = b1 + b2 – 6 = 14, i = i1 + i2 + 2 = 7, A = 7 + ½ ∙ 14 – 1 = 13. 

Figure 3:  b1 = 6, i1 = 1, A1 = 1 + ½ ∙ 6 – 1 = 3  and  b2 = 8, i2 = 2, A2 = 2 + ½ ∙ 8 – 1 = 5 

2 boundary points coincide, 2 common boundary point become interior points. 

b = b1 + b2 – 6 = 8, i = i1 + i2 + 2 = 5, A = 5 + ½ ∙ 8 – 1 = 8. 

 

 A 11.19:  

Figure 1: The area of the figure is 15.5 – 2 = 13.5. The area of the figure inside can be calculated using 

Pick’s theorem: b2 = 4, i2 = 1, A2 = 1 + ½ ∙ 4 - 1 = 2.  

The outer figure has b1 = 11 boundary points and i1 = 6 interior points, so if we apply Pick’s theorem we 

would get: A1 = 6 + ½ ∙ 11 - 1 = 10.5, but the 4 boundary points and the one interior point of the inner figure 

are not considered, which would be all inner points of the outer figure. So you would have to consider them 

as interior points first. Then the Pick’s theorem would be applicable.   

Figure 2: The areas of the two partial figures can be calculated using Pick’s theorem: 

on the left: A1 = 4 + ½ ∙ 6 - 1 = 6, on the right: A2 = 2 + ½ ∙ 4 - 1 = 3. The area of the whole figure is 9. This is 

only obtained using Pick’s theorem only can be applied if the common point of the two partial figures is 

counted twice.   

Figure 3: The figure has an area of 6.25 + 2.75 = 9. Counting the boundary points (11) and the interior  

points (6), this would result in an area of A = 6 + ½ ∙ 11 – 1 = 10.5. Pick’s theorem is therefore not applicable. 

(If the intersection point of the border lines were a grid point, you could argue as in Figure 2). 
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 A 11.20: 

Variation of the given examples: 

         

             

         

 

 A 11.21: 

(1) Figure on the left: A = 10; Figure on the right: A = 12 

(2) Figure on the left: b = 10, i = 1, 10210222 =−+=−+= biAT ;  

      Figure on the right: b = 8, i = 3, 1228622 =−+=−+= biAT  

(3) The formula for a square grid 1
2

1 −+= biAS  and the formula for a triangle grid 22 −+= biAT  differ 

only by the factor 2: ST AbibiA =−+=−+= 2)1(222
2
1 . 

This is plausible, because if you look at a rhombus grid instead of a square grid, nothing changes in the 
formula for the area, in which only the boundary points and the interior points are counted – the area of the 
figure on the triangular grid is therefore twice the area on the square grid or the rhombus grid. 

 

 A 11.22: 

(1) 1=Hi , 3=Ti , 12=Hb , 0=Tb : 32)120()13(
3
1

3
4

3
1

6
1

3
1 =−+=−+++=HA  

(2) 1=Hi , 0=Ti , 8=Hb , 1=Tb : 5,1)81()10(
3
1

6
9

3
1

3
1

6
1

3
1 =−+=−+++=HA  

(3) The formula results from the formula for the triangular grid and subsequent division by 6: 

3

1

6

1

3

1

6

1 )()()22( −+++=−+= HTHTH rriibiA . 
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Chapter 12 

 

 A 12.1: 

The fact that the two dice are not distinguishable does not change the fact that they are two different dice, so 

it makes a difference whether, for example, the outcome (2,3) or the outcome (3,2) occurs. 

 A 12.2:   

(1) 3 possible combinations exist each for 4 as sum of the spots and for the sum 10; 4 possible combinations 

exist for the sum 5 and for the sum 9; 5 possible combinations exist for the sum 6 and for the sum 8; 6 

possible combinations exist for the sum 7. 

1. fair rule: You win if the sum of the spots is 4, 5, 6 or 7. 

2. fair rule: You win if the sum of the spots is4, 5, 8 or 7. 

3. fair rule: You win if the sum of the spots is4, 9, 6 or 7. 

4. fair rule: You win if the sum of the spots is4, 9, 8 or 7. 

5. fair rule: You win if the sum of the spots is10, 5, 6 or 7. 

6. fair rule: You win if the sum of the spots is10, 5, 8 or 7. 

7. fair rule: You win if the sum of the spots is10, 9, 6 or 7. 

8. fair rule: You win if the sum of the spots is10, 9, 8 or 7. 

(2) In total there are 44 different fair game rules because you can get the sum 18 from 5 summands as 
follows:   

18 = 1+1+5+5+6 (1 game rule) 

Reason: There is 1 possible combination for 2 as sum of the spots and for the sum 12; 5 possible 

combinations for the sum 6 and for the sum 8; 6 possible combinations for the sum 7. Therefore a fair 

game rule could be: You win if the sum of the spots is 2,12, 6, 8 oder 7. 

18 = 1+2+4+5+6 (16 different game rules) 

18 = 1+3+3+5+6 (8 different game rules) 

18 = 1+3+4+4+6 (4 different game rules) 

18 = 1+3+4+5+5 (8 different game rules) 

18 = 2+2+3+5+6 (4 different game rules)  

18 = 2+2+4+4+6 (1 game rule)  

18 = 2+2+4+5+5 (2 different game rules)  

Reason: 2 possible combinations for 3 as sum of the spots and for the sum 11; 4 possible combinations 

for the sum 5 and for the sum 9; 5 possible combinations for the sum 6 and for the sum 8. Therefore fair 

game rules could be: You win if the sum of the spots is 3, 11, 5, 6 or 8. or You win if the sum of the 

spots is 3, 11, 9, 6 oder 8.  

18 = 2+3+3+5+5 (2 different game rules)  

18 = 2+3+4+4+5 (8 different game rules) 

(3) In order to determine fair game rules for three or four players, one must consider how 12 and 9 as the 

number of combinations can be obtained. Here are some examples ...  

for fair rules of the game for three players: 

A wins with the following  

sum of spots 

B wins with the following  

sum of spots 

C wins with the following  

sum of spots 

4, 5 or 6 

(3+4+5 = 12 combinations) 

8, 9 or 10 

(5+4+3 = 12 combinations) 

2, 3, 7, 11 or 12 

(1+2+6+2+1 = 12 combinations) 

2, 3, 4 or 7 

(1+2+3+6 = 12 combinations) 

5, 6 or 10 

(4+5+3 = 12 combinations) 

8, 9, 11 or 12 

(5+4+2+1 = 12 combinations) 

2, 4, 5 or 9 

(1+3+4+4 = 12 combinations) 

3, 6 or 8 

(2+5+5 = 12 combinations) 

7, 10, 11 or 12 

(6+3+2+1 = 12 combinations) 
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for fair rules of the game for four players: 

A wins with the following  

sum of spots 

B wins with the following  

sum of spots 

C wins with the following  

sum of spots 

D wins with the following  

sum of spots 

4 or 7 

(3+6 = 9 combinations) 

5 or 6 

(4+5 = 9 combinations) 

8 or 9 

(5+4 = 9 combinations) 

2, 3, 10, 11 or 12 

(1+2+3+2+1 =  

9 combinations) 

3, 4 or 5 

(2+3+4 =  

9 combinations) 

7, 11 or 12 

(6+2+1 =  

9 combinations) 

6 or 9 

(5+4 =  

9 combinations)  

2, 8 or 10 

(1+5+3 =  

9 combinations) 

 A 12.3:  

Table of combinations when rolling two tetrahedra  

  

Histogram for the probability distribution when rolling two tetrahedra 

 

Other way of illustration: 

    

(2) Generating function for rolling one tetrahedron:  ( )4321

4
1 1111)( xxxxxf +++=  

Factorizing the polynom: f(x) = ¼ ∙ x ∙ (1 + x) ∙ (1 + x²) 

Therefore we have two possibilities to combine the factors:  

f(x) = ½ ∙ (x1 + x²) ∙ ½ ∙ (x0 + x²)   und   f(x) = ½ ∙ (x0 + x1) ∙ ½ ∙ (x1 + x³) 

Thus we can use wheels of fortune (wheel-of-2) with the numbers (1, 2) and (0, 2) or (0, 1) and (1, 3),  

as also can be seen from the following combination tables: 

 0 2   1 3 

1 1 3  0 1 3 

2 2 4  1 2 4 
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(3)  

 

generating function for the sum of spots: 

   
( )8765432

16
1

4321

4
14321

4
1

1234321

11111111)²(

xxxxxxx

xxxxxxxxxf

++++++=

++++++=  

 

alternative labeling of the two tetrahedra 

(1, 2, 2, 3) and (1, 3, 3, 5) 

corresponding factorization: 

   
( )8765432

16
1

531

4
1321

4
1

1234321

121121)²(

xxxxxxx

xxxxxxxf

++++++=

++++=  

 

combination of a wheel-of-8 and a wheel-of-2  

(1, 2, 3, 3, 4, 4, 5, 6) and (1, 2) 

corresponding factorization: 

   
( )8765432

16
1

21

2
1654321

8
1

1234321

11112211)²(

xxxxxxx

xxxxxxxxxf

++++++=

++++++=  

 

combination of a wheel-of-8 and a wheel-of-2 

(1, 2, 2, 3, 3, 4, 4, 5) and (1, 3) 

corresponding factorization: 

   
( )8765432

16
1

31

2
154321

8
1

1234321

1112221)²(

xxxxxxx

xxxxxxxxf

++++++=

+++++=  

(4) f’(x) = ¼ ∙ (1 + 2x + 3x² + 4x³); f’’(x)  = ¼ ∙ (2 + 6x + 12x²), therefore 

f’(1) = ¼ ∙ (1 + 2 + 3 + 4) = 2.5 = ;  f’’(1) = ¼ ∙ (2 + 6 + 12) = 5, thus ² = 2,5 + 5 – 2,5² = 1.25 

 A 12.4: 

The generating function is given by 

( ) ( )

( )

1 2 3 4 1 2 3 4 5 61 1
4 6

2 3 4 5 6 7 8 9 101
24

( ) 1 1 1 1 1 1 1 1 1 1

1 2 3 4 4 4 3 2 1

f x x x x x x x x x x x

x x x x x x x x x

=  + + +   + + + + +

=  + + + + + + + +
 

The alternative random devices result from the different decompositions of the generating functions, whereby 
a wheel-of-2 could be replaced by a coin, an wheel-of-8 by a regular octahedron and a wheel-of-12 by a 
regular dodecahedron: 
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( ) ( )1 2 3 4 1 2 3 4 5 61 1
4 6

2 1 2 3 4 5 6 7 81 1
2 12

3 1 2 3 4 5 6 71 1
2 12

1 4 1 2 3 4 5 61 1
2 12

1
8

1 1 1 1 1 1 1 1 1 1

1 1 1 1 2 2 2 2 1 1

1 1 1 2 2 2 2 2 1

1 1 1 2 3 3 2 1

x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x

x x x x x x x x

 + + +   + + + + +

   =  +   + + + + + + +   

   =  +   + + + + + +   

   =  +   + + + + +   

=  1 2 3 4 5 6 7 2 31
3

1 2 3 4 5 1 3 51 1
8 3

2 3 1 3 5 71 1
4 6

1 2 4 5 1 2 3 4 51 1
4 6

1 31
4

1 1 1 2 1 1 1 1 1 1

1 2 2 2 1 1 1 1

1 2 1 1 2 2 1

1 1 1 1 1 1 2 1 1

1 1 1

x x x x x x x x x x

x x x x x x x x

x x x x x x x

x x x x x x x x x

x x x

   + + + + + +   + +   

   =  + + + +   + +   

   =  + +   + + +   

   =  + + +   + + + +   

=  + + 4 6 1 2 3 41
6

1 1 2 2 1x x x x x   +   + + +   

 

Random device 1 Labeling Random device 2 Labeling 

coin (1, 2) Dodecahedron (1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8) 

coin (1, 3) Dodecahedron (1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7) 

coin (1, 4) Dodecahedron (1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6) 

wheel-of-3 (1, 2, 3) Octahedron (1, 2, 3, 4, 4, 5, 6, 7) 

wheel-of-3 (1, 3, 5) Octahedron (1, 2, 2, 3, 3, 4, 4, 5) 

Tetrahedron (1, 2, 2, 3) Hexahedron (1, 3, 3, 5, 5, 7) 

Tetrahedron (1, 2, 4, 5) Hexahedron (1, 2, 3, 3, 4, 5) 

Tetrahedron (1, 3, 4, 6) Hexahedron (1, 2, 2, 3, 3, 4) 

 

 A 12.5: 

• Rolling 10 regular hexahedra:  = 10 ∙ 3,5 = 35; ² = 10 ∙ 35/12  29,17;   5,40 

– in about two thirds of the experiments in the interval between 30 and 40 (exactly: 69.1 %) 

– with a probability of about 90 % in the interval between 26 and 44 (exactly: 92.1 %) 

– with a probability of about 95% in the interval between 25 and 45 (exactly: 94.8%) 

– with a probability of about 99 % in the interval between 21 and 49 (exactly: 99.3 %) 

• Rolling 10 regular octahedra:  = 10 ∙ 4,5 = 45; ² = 10 ∙ 63/12 = 52,5;   7,25 

– in about two thirds of the experiments in the interval between 38 and 51 (exactly: 66.5 %) 

– with a probability of about 90 % in the interval between 33 and 57 (exactly: 91.5 %) 

– with a probability of about 95 % in the interval between 31 and 59 (exactly: 95.4 %) 

– with a probability of about 99 % in the interval between 26 and 64 (exactly: 99.3 %) 
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Chapter 13 

 

 A 13.1:  

Area of the partial figure:     Total area: 

2 ∙ (8² + ½ ∙ 8 ∙ 13 + ½ ∙ 5 ∙ 8) = 272   13 ∙ 21 = 273 

2 ∙ (8 ∙ 21 + ½ ∙ 8 ∙ 13 + ½ ∙ 13 ∙ 21) = 713  21 ∙ 34 = 714 

In both examples the white band has the area 1. The ratio of the partial area is 0.37 % and 0.14 % 

respectively. 

 A 13.2:  

In the second figure, the green triangle has a gradient of tan-1(8/13)  31.61°, the light blue triangle of  

tan-1(5/8)  32.01°. Even this difference of 0.40° is hardly noticeable!  

The whole figure is seen as a triangle, whose angle is given by the ratio 13:21: tan-1(13/21)  31.76°. 

In the third figure, the green triangle has a gradient of tan-1(5/8)  32.01°, the light blue triangle has a 

gradient of tan-1(3/5)  30.96°. This difference of 1.05° can perhaps be discovered! The whole figure is seen 

as a triangle whose angle is given by the ratio 8:13: tan-1(8/13)  31.61°. 

 A 13.3:   

     

 A 13.4: 

In puzzle 3 the light blue triangle has sides with the lengths 5 and 3; such a triangle does not appear here in 

the figure (here a side has the length 3 and the hypotenuse the length 5). The green triangle in puzzle 3 has 

sides with the lengths 5 and 8; here the hypotenuse has the length 8 and a side the length 5. This also 

applies accordingly to the illustration from puzzle 1.  

In the figures considered here, almost similar triangles occur in which the ratio of the length of a side to the 

length of the hypotenuse are adjacent Fibonacci numbers; the corresponding angles can be calculated using 

the inverse function of the sine: 

1 3
sin 36.87

5

−  
  

 
 ;  

1 5
sin 38.68

8

−  
  

 
 ;  

1 8
sin 37.98

13

−  
  

 
; 

1 13
sin 38.25

21

−  
  

 
; … 

 

 A 13.5: 

1 12 1

1 1 1 1 5 1
0.382

2 5 1 5 111
5 1 5 1

n n

n n nn n n

n n

f f

f f ff f f

f f
+ ++ +

−
= = = → = = 

++ + +++
− −

; 

1 5 1
tan 20.905157...

5 1

−
 −

=   + 
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 A 13.6:   

The two dark green colored triangles each have an area of ½ ∙ 3 ∙ 7 = 10.5. The two purple colored triangles 

each have an area of ½ ∙ 2 ∙ 5 = 5. The two blue-green coloured L-shaped forms each have an area of 14. 

If you sum up these areas, you get a total area of 2 ∙ (10.5 + 5 + 14) = 59. 

If you consider onlay the width of the base and the altitude of the two figures, then in both cases you get an 

area of ½ ∙ 10 ∙ 12 = 60.  

The violet colored rectangular triangles have an acute angle of tan-1(2/5)  21.80°, the dark green colored 

ones of tan-1(3/7)  23.20°.  

If you look closely, you can see that the "legs" of the isosceles “triangle” in the first figure are bent inwards 

and in the second figure outwards. If the vertices of the first figure were connected, a very narrow white band 

would be visible on both sides; these two bands have an area of ½ each, which results from the difference of 

areas: 60 – 59. 

Also in the second figure an area of 59 is colored, together with the two squares left white, you get an area of 

61.  

 A 13.7:  

In both figures the following four pieces are used: 

The light blue colored right-angled triangle has sides with the lengths 5 and 13, thus we have an area of ½ ∙ 

5 ∙ 13 = 32.5. The acute angle has an angular size of tan-1(5/13)  21.04°. 

The red colored right-angled triangle has sides with the lengths 8 and 21, thus we have an area of ½ ∙ 8 ∙ 21 

= 84. The acute angle has an angular size of tan-1(8/21)  20.85°. 

The yellow right-angled trapezoid has basic sides with the lengths 34 and 13 and an altitude with the length 

8, thus we have an area of 34 ∙ 8 – ½ ∙ 21 ∙ 8 = 188. The acute angle has an angular size of tan-1(8/21)  
20.85°, i.e. the red colored triangle and the yellow colored trapezium complement each other to form a 
rectangle. 

The green colored rectangular trapezoid has base sides with the lengths 34 and 21 and an altitude with the 
length 8, i.e. an area of 34 ∙ 8 - ½ ∙ 13 ∙ 8 = 220. The acute angle of the right-angled triangle missing in 

relation to a rectangle has an angular size of tan-1(5/13)  21.04°, i.e. the blue triangle and the green 
trapezium complement each other to form a rectangle. 

The first rectangular figure has an area of 13 ∙ 55 = 715, the second of 21 ∙ 34 = 714. The difference of 1 unit 
square is due to the diagonal boundary lines of the two trapezoids and triangles, which do not match exactly. 
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Chapter 14 

 

 A 14.1:   

 

dimensions 69x61: The squares have the side lengths 2, 5, 7, 9, 16, 25, 28, 33, 36. The side lengths can be 

assigned to the squares when starting in the middle and going to the boundary. 

Examples for horizontal cuts (from left to right):  

36 (yellow) +  33 (green) = 69; 25 (green) + 16 (blue) + 28 (red) = 69.  

Examples for vertical cuts (from top to bottom):  

36 (yellow) +  25 (green) = 61; 33 (green) + 28 (red) = 61. 

 

    

 dimensions 57x55     dimensions 65x47 

 

 A 14.2: 

c = x + 1  d = c + 1 = x + 2 e = d + 1 = x + 3 b = c + x = 2x +1  

g = (e + 1) – x = 4 f = e + g = x + 7  a = f + g = x + 11 

width below: a + b = 3x + 12 width above: f + e + d = 3x + 12 

height on the left: a + f = 2x + 18  height on the right: b + c + d = 4x + 4 

2x + 18 = 4x + 4    x = 7 

a = 18 ; b = 15 ; c = 8 ; d = 9 ; e = 10 ; f = 14 ; g = 4 ; x = 7 (dimension: 33x32) 

 

 A 14.3:   

(1) 33x32-rectangle from fig. 14.3: (18,5)(7,8)(14,4)(10,1)(9)  

(2) 57x55-rectangle from fig. 14.5a: (30,27)(3,11,13)(25,8)(17,2)(5) 

(3) 65x47-rectangle from fig. 14.5b: (25,17,23)(11,6)(5,24)(22,3)(19)  
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 A 14.4:  

h = x + 1 c = h + 1 = x + 2 d = c + 1 = x + 3 b = c + h = 2x + 3 

e = x + g f = e + g = x + 2g a = f + g = x + 3g 

From a + g = b + h + x it results:  x + 3g + g = 2x + 3 + x + 1 + x  4g = 3x + 4. 

horizontal cut: a + b = x + 3g + 2x + 3 = 3x + 3g + 3 and  

f + e + d = x + 2g + x + g + x + 3 = 3x + 3g + 3 

vertical cut: a + f = x + 3g + x + 2g = 2x + 5g and 

b + c + d = 2x + 3 + x + 2 + x + 3 = 4x + 8 

From 2x + 5g = 4x + 8 it results: 5g = 2x + 8. 

Since 5 ∙ 4g = 15x + 20 = 4 ∙ 5g = 8x + 32 it results: 

7x = 12, i. e. x = 12/7 and further:  

5g = 24/7 + 8 = 80/7, i. e. g = 16/7; h = 19/7;  

c = 26/7; d = 33/7; b = 45/7; e = 4; f = 44/7; a = 60/7. 

If you choose a side length of 7 length units for the 

smallest square, we get the following other side 

lengths: 

a = 60, b = 45, c = 26, d = 33, e = 28, f = 44,  

g = 16, h = 19  and x = 12, see figure on the right. 

dimension: 105x104  

 

Description by the Bouwkamp notation: (60,45)(19,26)(44,16)(12,7)(33)(28)   

 

f = x + h g = x + f = 2x + h a = g + x = 3x + h e = f + h = x + h + h = x + 2h 

d = e + 1 = x + 2h + 1   c = d + 1= x + 2h + 2 b = c + 1 = x + 2h + 3 

Vertical cuts: a + g = 3x + h + 2x + h = 5x + 2h  and b + e = x + 2h + 3 + x + 2h = 2x + 4h + 3  and 

c + d = x + 2h + 2 + x + 2h + 1 = 2x + 4h + 3 

From this we get the condition 5x + 2h = 2x + 4h + 3  3x = 2h + 3.  

Horizontal cuts: a + b + c = 3x + h + x + 2h + 3 + x + 2h + 2 = 5x + 5h + 5 and 

g + f + e + d = 2x + h + x + h + x + 2h + x + 2h + 1 = 5x + 6h + 1 

From this it results:  

5x + 5h + 5 = 5x + 6h + 1  h = 4. 

From 3x = 2h + 3 we get: 3x = 11, i. e. x = 11/3, and 

further: a = 15, b = 44/3, c = 41/3, d = 38/3,  

e = 35/3, f = 23/3, g = 34/3. 

If you choose a side length of 3 length units for the 

smallest square, we get the following other side 

lengths: 

a = 45, b = 44, c = 41, d = 38, e = 35, f = 23,  

g = 34, h = 12 and x = 11, see figure on the right. 

dimension: 130x79   
 

Description by the Bouwkamp notation: (45,44,41)(3,38)(12,35)(34,11)(23)   
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h = x + 1 g = h + x = 2x + 1  f = g + x = 3x + 1  d = f + g = 5x + 2  e = f + d = 8x + 3 

c = d + g + h = 5x + 2 + 2x + 1 + x + 1 = 8x + 4   

b = c + h + 1 = 8x + 4 + x + 1 + 1 = 9x + 6 a = b + 1 = 9x + 7 

vertical cuts: a + e = 9x + 7 + 8x + 3 = 17x + 10   and  b + c = 8x + 4 + 9x + 6 = 17x + 10  

horizontal cuts: a + b = 9x + 7 + 9x + 6 = 18x + 13 and  e + d + c = 8x + 3 + 5x + 2 + 8x + 4 = 21x + 9 

From this it results:  

18x + 13 = 21x + 9  3x = 4  x = 4/3  

and further: h = 7/3, g = 11/3, f = 15/3, d = 26/3,  

e = 41/3, c = 44/3, b = 54/3, a = 57/3.  

If you choose a side length of 3 length units for the 

smallest square, we get the following other side 

lengths: 

a = 57, b = 54, c = 44, d = 26, e = 41, f = 15,  

g = 11, h = 7 and x = 4, see figure on the right. 

dimension: 111x98   

Description by the Bouwkamp notation:  

(57,54)(3,7,44)(41,15,4)(11)(26) 

 

 

g = x + 1 e = g + 1 = x + 2 f = g + e = 2x + 3 a = f + g + x = 4x + 4 

d = f – x = x + 3  c = h + d = h + x + 3 b = c + h = 2h + x + 3 

a + x = b + h  4x + 4 + x = 2h + x + 3 + h  4x + 1 = 3h, i. e.  h = 4/3 ∙ x + 1/3 

Thus we get: c = 4/3 ∙ x + 1/3 + x + 3 = 7/3 ∙ x + 10/3   and  b = 2 ∙ (4/3 ∙ x + 1/3) + x + 3 = 11/3 ∙ x + 11/3   

vertical cuts:  a + f = 4x + 4 + 2x + 3 = 6x + 7  and b + c = 11/3 ∙ x + 11/3 + 7/3 ∙ x + 10/3 = 6x + 7 

horizontal cuts: a + b = 4x + 4 + 11/3 ∙ x + 11/3 = 23/3 ∙ x + 23/3 and  

f + e + d + c = 2x + 3 + x + 2 + x + 3 + 7/3 ∙ x + 10/3 = 19/3 ∙ x + 34/3 

From this it follows: 23/3 ∙ x + 23/3 = 19/3 ∙ x + 34/3  4/3 ∙ x = 11/3  x = 11/4  

and further: 

a = 60/4, b = 55/4, c = 39/4, d = 23/4, e = 19/4, 

f = 34/4, g = 15/4, h = 16/4 

If you choose a side length of 4 length units for the 

smallest square, we get the following other side 

lengths: 

a = 60, b = 55, c = 39, d = 23, e = 19, f = 34,  

g = 15, h = 16 and x = 11, see figure on the right. 

dimension: 115x94  

Description by the Bouwkamp notation: 

(60,55)(16,39)(34,15,11)(4,23)(19)     
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 A 14.5: 

(1) (56,41)(17,24)(40,14,2)(12,7)(31)(26),  

 

(2) (51,47)(8,39)(35,11,5)(1,7)(6)(24) 

 

(3) (50,48)(7,19,22)(45,5)(12)(28,3)(25) 

 

(4) (43,29,40)(19,10)(9,1)(41)(38,5)(33). 

 

 

 A 14.6: 

We can assign a side length of 1 to the small red colored square. Then we get: 

m = n + 1 l = m + 1 = n + 2 k = l + 1 = n + 3  p + n = k + 1  p + n = n + 3 + 1  p = 4   

o = n – p = n – 4  q = o – p = n – 4 – 4 = n – 8  a = m + n + o = n + 1 + n + n – 4 = 3n – 3  

In the lower right corner of the figure, the following relationships arise: 

e = u + x f = e + x = u + 2x  g = f + x = u + 3x c = u + e = 2u + x 

h = g – v = u + 3x – v   s = h – v = u + 3x – 2v 

t + u = v + g + x = v + u + 3x + x    t = v + 4x 

r + s = t + v, also r + u + 3x – 2v = v + 4x + v, d. h. r = 4v – u + x  

d = r + t = 4v + x – u + v + 4x = 5v + 5x – u 

b = c + d = 2u + x + 5v + 5x – u = u + 6x + 5v  

Together with the squares considered in the beginning we have: 

h + s + q = p + k, and further u + 3x – v + u + 3x – 2v + n – 8 = 4 + n + 3  2u – 3v + 6x = 15 
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• horizontal cuts: a + b = 3n – 3 + u + 6x + 5v 

m + n + o + d + c = n + 1 + n + n – 4 + 5v + 5x – u + 2u + x = 3n + 5v + 6x + u – 3  

l + k + h + g + f = n + 2 + n + 3 + u + 3x – v + u + 3x + u + 2x = 2n + 3u + 8x – v + 5 

From this we get the following equation 

3n + 5v + 6x + u – 3 = 2n + 3u + 8x – v + 5  n – 2u + 6v – 2x = 8 

• vertical cuts: 

a + m + l = 3n – 3 + n + 1 + n + 2 = 5n 

b + d + t + g = u + 6x + 5v + 5v + 5x – u + v + 4x + u + 3x = u + 18x + 11v  

b + c + e + f = u + 6x + 5v + 2u + x + u + x + u + 2x = 5u + 10x + 5v  

From this we get the following two equations 

5n = u + 18x + 11v  -5n + u + 11v + 18x = 0 

u + 18x + 11v = 5u + 10x + 5v  -4u + 6v + 8x = 0 

The system of equations has the following solutions: n = 11, u = 6, v = 2 und x = 1,5.  

From this we get: a = 30, b = 25, c = 13,5, d = 11,5, e = 7,5, f = 9, g = 10,5, h = 8,5, k = 14, l = 13, m = 12,  

o = 7, p = 4, q = 3, r = 3,5, s = 6,5, t = 8. 

If you choose a side length of 2 length units for the smallest square, we get the following other side lengths: 

a = 60, b = 50, c = 27, d = 23, e = 15, f = 18, g = 21, h = 17, k = 28, l = 26, m = 24, n = 22, o = 14, p = 8,  

q = 6, r = 7, s = 13, t = 16, u = 12, v = 4 and x = 3 . 

 

 A 14.7:  
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 A 14.8:   

   

 Total length: 168       Total length: 330   

 

   

 Total length: 290       Total length: 296  
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Chapter 15 

 

 A 15.1: 

Problem No.1: 

r 1/10 1/9 1/8 1/7 1/6 1/5 1/4 3/10 1/3 2/5 1/2 

x 9/91 8/73 7/57 6/43 5/31 4/21 3/13 21/79 2/7 6/19 1/3 

Problem No.2: 

r 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 3/7 1/2 3/5 2/3 3/4 

x 36/121 8/25 28/81 3/8 20/49 4/9 12/25 1/2 12/25 4/9 3/8 8/25 12/49 

 

 A 15.2:  
 

Note that in formula 15.3 the variable x is used for the curvature of the circle to be determined, in the solution 

of the two problems the variable x stands for the radius of the circle. Therefore, the variable z is used here 

for the curvature of the circle to be determined. 

• Problem No.1 

Given is a circle with radius r and a circle with radius 1 – r as well as the outer circle with radius 1. Then the 

following applies for the two circles to be completed with curvature z according to formula 15.3: 

2 2
1 1 1 1 1 1

1 2 1 1
1 1 ² (1 )²

z
r r r r r r

      
− + − =  + − − + +      − − −        

 

Auxiliary calculation: 

1 1 1 (1 ) 1 ²
1

1 (1 ) (1 )

r r r r r r

r r r r r r

− + −  − − +
+ − = =

−  −  −
, so 

2
1 1 (1 ²)²

1
1 ² (1 )²

r r

r r r r

− + 
+ − = 

−  − 
 

4

4

1 1 (1 )² ² ² (1 )² 1 2 ² ² ² 2 ³
1

² (1 )² ² (1 )² ² (1 )²

1 2 3 ² 2 ³ (1 ²)²

² (1 )² ² (1 )²

r r r r r r r r r r

r r r r r r

r r r r r r

r r r r

− + +  − − + + + − +
+ + = =

−  −  −

− + − + − +
= =

 −  −

 

i.e. there is zero on the right-hand side of the quadratic equation. The quadratic equation therefore only has 

the solution 
1 ²

(1 )

r r
z

r r

− +
=

 −
. The radius of the circles to be completed is then equal to the reciprocal of this 

fractional term, see solution of problem no.1. 

 

• Problem No.2 

Given is a circle with radius r and two circles with radius x. The outer circle is initially ignored. Then the 

following applies to the two circles to be supplemented with curvature z according to formula 15.3: 

2 2
1 1 1 1 1 1 1 1 1

2
² ² ²

z
r x x r x x r x x

       
− + + =  + + − + +       
         

 

 



Heinz Klaus Strick: Mathematics is beautiful, Springer, ISBN: 978-3-662-59060-7 

Solutions for ”Mathematics is beautiful” – page 87 / 119 

Auxiliary calculation: 

2 2
1 1 1 1 2 1 4 4

² ²r x x r x r rx x

   
+ + = + = + +   

   
 

2
1 1 1 1 2 1 4 4 1 2 4 2 2 (2 )

² ² ² ² ² ² ² ²

x r

r x x r x r rx x r x rx x rx

 +   
+ + − + = + + − − = + =   

   
 

The two solutions of the quadratic equation are 

1

1 2 4 (2 )

²

x r
z

r x rx

 +
= + +  and 2

1 2 4 (2 )

²

x r
z

r x rx

 +
= + − , 

where for the negative solution z2 applies: z2 = -1, because the outer circle has the radius 1. 

Therefore we have 
1 2 4 (2 )

1
²

x r

r x rx

 +
− = + − , i.e. 

4 (2 ) 1 2 2
1

²

x r x r rx

rx r x rx

 + + +
= + + = . 

Squaring the two sides of the equation gives: 

4 (2 ) ( 2 )²

² ² ²

x r x r rx

rx r x

 + + +
=   4r ∙ (2x + r) = (x + 2r + rx)²  

 8rx + 4r² = x² + 4r² + r²x² + 4rx + 2rx² + 4r²x 

 4rx – 4r²x = x² + r²x² + 2rx²    4rx ∙ (1 – r) = x² ∙ (1 + 2r + r²)   4r ∙ (1 – r) = x ∙ (1 + r)²,  

see solution of problem no. 2. 

 

 A 15.3:  

• Cartesian triple (5 ; 8 ; 8) 

 

If we choose r5 = 360/3 = 120 for the outer radius, then we have r1 = 360/5 = 72 (blue);  

r2 = r3 = 360/8 = 45 (green, yellow), thus we get r4 = 360/45 = 8 (red), and from that we have 

r6 = 360/21 = 120/7 (pink), r7 = 360/12 = 30 (light blue) 

 

• Cartesian triple (1 ; 1 ; 4), see chapter 15.5 

 

If we choose r1 = 12/1 = 12 (green), r2 = 12/1 = 12 (yellow) and r3 = 12/4 = 3 (blue), then we get 

r4 = 12/12 = 1 (red) and r5 = 12/0 =  (outer circle) and subsequently (not shown in the graphic): r6 = 4/3 

(which touches the yellow or green and the blue circle as well as the straight line)    
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• Cartesian triple (1 ; 4 ; 9), see chapter 15.5 

If we choose r1 = 252/1 = 252 (green), r2 = 252/4 = 63 (yellow) and r3 = 252/9 = 28 (blue), then we get 

r4 = 252/28 = 9 (red) and r5 = 252/0 =  (outer circle), and subsequently (not shown in the graphic): r6 = 63/4 

(which touches the yellow or green and the blue circle as well as the straight line)    

       

• Cartesian triple  (2 ; 3 ; 6)  

 

If we choose r5 = 138/1 = 138 for the outer radius, then we get r1 = 138/2 = 69 (green);  

r2 = 138/3 = 46 (yellow) and r3 = 128/6 = 23 (blue), and so we have r4 = 128/23 = 6 (red), and  

subsequently r6 = 138/2 = 69 (blue-grey), r7 = 11 (turquoise), r8 = 14 (pink). 

The graph matches that of the Cartesian triple (2 ; 2 ; 3). 

• Cartesian triple (3 ; 7 ; 10) 

 

If we choose r5 = 210/2 = 105 for the outer radius, then we get r1 = 210/3 = 70 (green);  

r2 = 210/7 = 30 (yellow) and r3 = 210/10 = 10 (blue), and so we have r4 = 210/42 = 5 (red), and  

subsequently r6 = 210/6 = 35 (blue-grey), r7 = 210/15 = 14 (light blue), r8 = 210/27 = 70/9 (pink). 

The graph matches that of the Cartesian triple (3 ; 6 ; 7). 

• Cartesian triple (8 ; 9 ; 9) 
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If we choose r5 = 504/4 = 126 for the outer radius, then we have r1 = 504/8 = 63 (green);  

r2 = r3 = 504/9 = 56 (blue, yellow), and thus we get r4 = 504/56 = 9 (red), and subsequently  

r6 = 504/17 (blue-grey, light blue), r7 = 504/20 = 126/5 (pink) 

 

 A 15.4:  

(1) The configuration of the circles is point-symmetrical and axisymmetrical: 

r1 = r2 = r3 = 1 (green, yellow, blue)  

Solution of Descartes‘ equation: 3 2 3x =   , so 

4

1
0.1547

3 2 3
r = 

+ 
 (red) and  

5

1
2.1547

3 2 3
r = − 

− 
 (outer circle) 

( )
6

1
2 1 1 (3 2 3) 1 2.072

r
=  + + −  −  , i.e. r6  0.,483 (light blue).  

(2) r1 = r2 = 5 (green, yellow), r3 = 8 (blue) 

Solution of Descartes‘ equation: 

1 1 1 1 1 1 1 1 1 21 9 21 24
2 2

5 5 8 5 5 5 8 5 8 40 100 40 40
x

 
= + +    +  +  =   =  
 

 

From this we get  8
4 9

0.889r =   (red) and  40
5 3

13.333r =   (outer circle).  

wanted: two circles, 

which touch the 

following three circles 

radius 

already 

known  
( )1 1 2 3 22x k k k x=  + + −  

radius of the  

new circle 

green (5), blue (8),  

outer circle (40/3) 
yellow (5) 

1 1 3 1 3
2

5 8 40 5 10

 
 + − − = 
 

 
10

3.3
3
  (light blue) 

green (5), yellow (5),  

outer circle (40/3) 
blue (8) 

1 1 3 1 21
2

5 5 40 8 40

 
 + − − = 
 

 
40

1.905
21

  (pink) 

(3) r1 = 6 (green), r2 = 5 (yellow), r3 = 3 (blue) 

2
1 1 1 1 1 1 1 1

2
6² 5² 3² ² 6 5 3x x

   
 + + + = + + +   
   

    

2
161 1 7 1

2
900 ² 10x x

   
 + = +   
   

   

1 7 119
0

² 5 900x x
− − =      

180 900
²

17 119
x x+ =     

90 504000

17 119
x = −   ,  

therefore  r4  0.672  and  r5  11.260  

 

wanted: two circles,  

which touch the  

following three circles 

radius 

already 

known 

( ) 23211 2 xkkkx −++=  
radius of the  

new circle 

green (6), blue (3),  

outer circle(11.260) 
yellow (5) 

1 1 1 1
2 0.622

6 3 11.260 5

 
 + − −  
 

 1.607 (light blue) 

blue (3), yellow (5),  

outer circle (11.260) 
green (6) 

1 1 1 1
2 0.722

3 5 11.260 6

 
 + − −  
 

 1.384 (pink) 
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green (6), yellow (5), 

outer circle (11.260) 
blue (3) 

1 1 1 1
2 0.222

6 5 11.260 3

 
 + − −  
 

 4.497 (blue-grey) 

 

 A 15.5: 

(1) From the curvatures of the touching circles k1 = 14, k2 = 15 and k3 = 11 results according to formula 15.5: 

( )14 15 11 2 14 15 14 11 15 11 40 2 529 40 46+ +    +  +  =   =  , thus k4 = -6 (curvature of the outer 

circle) and k5 = 86. 

From this, the curvatures of the neighbouring circles are obtained with the help of formula 15.4: 

2 ∙ (14 + 15 – 6) – 11 = 35 (touching the circles with the curvatures k1, k2 und k4), 

2 ∙ (14 + 11 – 6) – 15 = 23 (touching the circles with the curvatures k1, k3 und k4) etc. 

(2) From the curvatures of the touching circles k1 = 8, k2 = 8 und k3 = 5 results according to formula 15.5: 

( )8 8 5 2 8 8 8 5 8 5 21 2 144 21 24+ +    +  +  =   =  , thus k4 = -3 (curvature of the outer circle)  

and k5 = 45. 

From this, the curvatures of the neighbouring circles are obtained with the help of formula 15.4: 

2 ∙ (8 + 8 – 3) – 5 = 21 (touching the circles with the curvatures k1, k2 und k4),  

2 ∙ (8 + 5 – 3) – 8 = 12 (touching the circles with the curvatures k1, k3 und k4) etc. 

(3) From the curvatures of the touching circles k1 = 4, k2 = 12 und k3 = 13 results according to formula 15.5: 

( )4 12 13 2 4 12 4 13 12 13 29 2 256 29 32+ +    +  +  =   =  , thus k4 = -3 (curvature of the outer 

circle) and k5 = 61. 

From this, the curvatures of the neighbouring circles are obtained with the help of formula 15.4: 

2 ∙ (12 + 13 – 3) – 4 = 40 (touching the circles with the curvatures k2, k3 und k4),  

2 ∙ (13 + 4 – 3) – 12 = 16 (touching the circles with the curvatures k1, k3 und k4) etc. 

 

 A 15.6:   

In example 2 we have  1
2

r =   and  1
0 3

r = . From this, the curvatures of the neighbouring circles K1 are 

1 1 1
1 3 6 2

1 1 1 1
7

r
= + − = , and consequently: 

 
1 1 1

2 3 6 2

1 4 1 4
10

r
= + − = , 

1 1 1
3 3 6 2

1 9 1 9
15

r
= + − =  and 

1 1 1
4 3 6 2

1 16 1 16
22

r
= + − =  . 

Generally: 
1 1 1

1 3 6 2

1 ( 1)² 1 ( 1)²
( 1)² 6 ² 2 7

n

n n
n n n

r +

+ +
= + − = + + = + +  

and thus the sequence of curvatures is 6, 7, 10, 15, 22, 31, 42, … 

 

 A 15.7:   

Example: 12, 13, 16, 21, … 

Here we have  r = 1/3 (outer circle) and r0 = ¼  

1 1 1
1 4 12 3

1 1 1 1
13

r
= + − = ; 

1 1 1
2 4 12 3

1 4 1 4
16

r
= + − =  ;  

1 1 1
3 4 12 3

1 9 1 9
21

r
= + − =  ;  

1 1 1
4 4 12 3

1 16 1 16
28

r
= + − =  
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 Generally: 
1 1 1

1 4 12 3

1 ( 1)² 1 ( 1)²
( 1)² 12 ² 2 13

n

n n
n n n

r +

+ +
= + − = + + = + +  

 

  A 15.8:   

According to formula 15.4, the curvature k4 of a circle, which touches the circles with the curvatures 

k1 = n², k2 = (n + k)², k3 = (2n + k)²: 

k4 = 2 ∙ (n² + (n + k)² + (2n + k)²) – 0 =  2 ∙ (n² + n² + 2nk + k² + 4n² + 4nk + k²), thus 

k4 = 4 ∙ (3n² + 3nk + k²)  with n, k  IN 

Examples: For n = 1 and k = 0 we get: k4 = 4 ∙ (3 + 0 + 0) = 12, see fig. 15.7a; for n = 1 and k = 1 we get:  

k4 = 4 ∙ (3 + 3 + 1) = 28, see fig. 15.7b. 

 

 A 15.9:   

From ( )1 2 3 1 2 1 3 2 3² ² ² 2k k k k k k k k k+ + =  + +  we get 

k3² – 2 ∙ k3 ∙ (k1 + k2) = 2 ∙ k1 ∙ k2 – k1² – k2²   (k3 – (k1 + k2))² = 2 ∙ k1 ∙ k2 – k1² – k2²  + (k1 + k2)²  

(k3 – (k1 + k2))² = 4 ∙ k1 ∙ k2, and therefore ( )3 1 2 1 22k k k k k= +   . 

In the example with k1 = k2 = 1, the two solutions are k3 = 0 respectively k3 = 4. 

In the example with k1 = 1 (yellow) and k2 = 4 (green), the two solutions are k3 = 1 respectively k3 = 9, i.e. 

apart from the circle with radius r3 = 1/9 (light blue), there is another circle with radius r3 = 1. 

etc. 

  

 

 A 15.10:  

 

For the right-angled triangle determined by the centres of the yellow-coloured and the green-coloured circle, 
the following applies: 

1 1² ( )² ( )²x r r r r= + − − , and from this we get 1² 4x r r=   , therefore with 1
2

r = :  1² 2x r=  . 

For the distance x also applies: 1 1 1² (1 )² ² 1 2x r r r= − − = −  

From this we get: 1 11 2 2r r− =    1
1 4
r = , i.e. 1

2
2x =  . 
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To determine the centre M2 (x2|y2) and the radius r2, consider the following triangles: 

red: 
2 2 21 1

2 2 22 2
( ) ( )y x r− + = +  

green:  
2 2 21 1 1

2 2 24 2 4
( ) ( 2 ) ( )y x r− +  − = +  

blue: 
2 2 2

2 2 2(1 )x y r+ = −  

Transforming these three equations gives 

2 2 2

2 2 2 2 2x y r y r+ − = +  

2 2 2 1 1 1
2 2 2 2 2 22 2 2

2x y r x y r+ − =  + + −  

2 2 2

2 2 2 21 2x y r r+ − = −  

Therefore we have the two equations  2 2 21 2y r r+ = − , i.e. 2 21 3y r= − , and 

1 1 1
2 2 2 2 22 2 2

2y r x y r+ =  + + − , i.e. 1 1 1
2 2 22 2 2

2 x y r − − = .  

If one replaces the variable y2, one obtains from this 2 22 1x r + = , i.e. 2
2 22

(1 )x r=  − . 

For example, if one substitutes this into the third equation 
2

2

2

2

2

2 )1( ryx −=+ , we get: 

2 2 21
2 2 22

(1 ) (1 3 ) (1 )r r r − + − = − , and 

2 2 21 1
2 2 2 2 2 22 2

1 6 9 2 1r r r r r r− +  + − + = − +    
217 1

2 22 2
5r r− = −    

2 10 1
2 217 17

r r− = −     
25 25 81

2 17 289 17 289
( ) ( )r − = − =    r2  0.128  (which is the smaller of the two solutions) 

From this we get: x2  0.617 und y2  0.617. 

The radius can also be calculated using Descartes' formula (15.3) - ignoring the restriction to a semicircle. 

Replacing 1
1 0,5

2k = = , 1
2 0,25

4k = =  and 1
3 1

1k
−

= = −  leads to 
2

4( 5) 2 3k − =  , and therefore 

1
4 5 2 3

r


= .  

The smaller of the two solutions is the radius calculated above; the following figure also shows the other 

touching circle. 
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The radius of the circle coloured red in the problem can then be calculated with the help of Vieta's theorem 

(formula 15.4): The radii of the yellow circle (0.5) and blue circle (0.128) as well as the radius of the outer 

circle (1) are known; a solution is then already known, namely the radius of the green circle (0.25): 

( )1 1 1 1 1
0.5 0.128 1 0.25 0.073

2 13.657 + − −   . Therefore the radius is 0.073! 

 

 A 15.11:  

left figure: The following applies to the diagonal of the square: 2 2 (1 2)r=  +  and 

1
2

2 2 ( 2 1)
1 2 0.293

22 (1 2)
r

 −
= = = −  

 +
. 

 

right figure: In the rectangular triangle whose hypotenuse is equal to the line segment between the centre of 

the semicircle and the centre of the small circle on the right we have: 

2 2 21 1
4 2

( ) ( )r r r+ + = − , therefore 
2 3 3

2 16
r r+ =    

23 3
4 4

( )r + =    
3 3

2 4
0.116r = −  .  

 

 A 15.12:  

The following applies to the radius R = 1 of the quarter circle (= side length of the square): 

1 = r1 + r1 ·2, also 1

1 2 1
2 1 0.414

1 2 ( 2 1)( 2 1)
r

−
= = = − 

+ + −
 

and further for the diagonal of the square 2 = 1 + (r2 + r2 · 2), therefore 

2

2 1 ( 2 1)²
( 2 1)² 3 2 2 0.172

1 2 ( 2 1)( 2 1)
r

− −
= = = − = −  

+ + −
 

 

 A 15.13:  

 

right-angled triangle with red hypotenuse: 
2 2 21

2 22
(1 ) ( ) (1 )r r− + = + , therefore 1

2 4
4r = , i.e. 1

2 16
r =  

right-angled triangle with green hypotenuse: 
2 2 21

2 2
( ) 1a a+ + = , also 

25 31
4 2 4
a a+ =    

2 32
5 5

a a+ =   

 
2 161

5 25
( )a+ =     3

5
a =  
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right-angled triangle with blue hypotenuse: 
2 2 21

1 12
( ) ( ) (1 )a r r+ + = − , and with 3

5
a =  we get:  

16 39
25 100

r =    39
2 320

r =  

 

 A 15.14:  

Between the square’s diagonal (length 2 ) and the radius r of the red coloured circle the following relation 

applies: 1 12 2 (1 2 ) 2r r+  − = , i.e. 12 2 2r = −    1
1 2

1 2 0.293r = −    

If you then draw a line between the left upper vertex of the square to the centre of a small circle (here then 

top right), then this is the hypotenuse in a right-angled triangle with legs of the lengths x and 1 – x and a 

hypotenuse of length 1 – r2. Therefore we have 

2 2 2

2(1 ) (1 )x x r+ − = −    
2 2

22 2 1 (1 )x x r− + = −   

For the diagonal of the larger square we have:  1 22 2 2 2 2r r x +  +   = , thus 

1 1
2 2 2

2 (1 2) 2 ( 2 1) 2r x x= − −  −  = − −   and therefore 

21 2 (2 2)r x− =  + − , further applies 

2 2 2

2(1 ) 2 2 (2 2) 2 (6 4 2) 2 (4 2 4) (6 4 2)r x x x x− = +  −   + −  = +  −  + −   

With the term standing on the right and the term from above we get: 

2 22 2 1 2 (4 2 4) (6 4 2)x x x x− + = +  −  + −    (4 2 2) 4 2 5x −  =  − , i.e. 

1
14

4 2 5
(11 6 2) 0.180

4 2 2
x

 −
= =  −  

 −
, and therefore 

31 1
2 14 14 7

( 2 1) (11 6 2) 2 2 0.160r = − −  −   =  −   

 

 A 15.15:  

right-angeld triangle OAM1 (red): 
2

1

2

1
2

2

1 )1()( rr −=+ , therefore 
2

11

2

14

1 21 rrr +−=+    
4

3
12 =r   

8

3
1 =r  

Other right-angled triangles (blue):  

OBM2: 
2 2 2

2 2OB BM OM+ =   
2 2 2

2 2 2(1 ) (1 )r BM r− + = +  

BCM2: 
2 2 2

2 2BC BM CM+ =    
2 2 2

2 2 2(1 )r BM r+ = −  

Dissolve the two equations to 
2

2BM and equate: 

2

2
2

2
2

2
2

2

2

2 )1()1()1( rrrrBM −−=−−+=  and then 

2

2

2

22

2

22

2

22 212121 rrrrrrr −+−=−+−++    16 2 =r     
6

1
2 =r  

right-angled triangle OAM3 (green): 2
3

2
3

2

2

1 )1()1()( rr +=−+ , therefore 

2

33

2

334

1 2121 rrrr ++=+−+    
4

1
34 =r    

16

1
3 =r  
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 A 15.16: 

  

Regardless of which of the positions of the circles one looks at, the following applies: The 5 circles have an 

area of 
2 2( 4 )A s r=  + .  

The diagonal of the square has the length 2 ; it is composed of twice the length of the radius r and twice 

the length of the radius s, and two half diagonals in each of the smaller squares in the corners; these 

distances have the length 2r  . Altogether, therefore, the following applies 2 2 2 2 2r r s  +  +  = :   

From this condition one can derive a term for s: 1
2

2 ( 2 1)s r=  − +   and after substitution one then 

obtains a quadratic function 

( )2 2 21
2

( ) ( 4 ) (2 2) (7 2 2)A r s r r r =  + =  − +  + +   , 

whose graph represents a parabola opened upwards. The largest values are assumed to be on the right or 

left edge of the domain of the problem.  

Therefore, we determine this domain: 

(1) The circle with radius s touches the sides of the square, i.e. s = 0,5. In this case we have  

2 ( 2 1) 2 0,5 2r +  +  = , therefore 
2 1 ( 2 1)( 2 1) 3 2 2

0.086
22 ( 2 1) 2 ( 2 1)( 2 1)

r
− − − −

= = = 
 +  + −

 

(2) The vier circles in the corners touch each other, i.e. r = 0,25, therefore the domain is:  0.086  r  0.25  

The function values are:  A(0.086)  0.878 and A(2.5)  0.819, 

i.e. the maximum is assumed in the case that the inner circle 

touches the square sides.  

What remains to be calculated:  

– Which area is covered when the five radii are equal?  

Then applies:  (2 2 4) 2r +  = and therefore 

1
2

( 2 1) 0,207r =  −   with  A  0.674. 

– Which is the minimum of coverage?  

From the graph you can see that this minimum is r ≈ 0.174. 

The exact value can be found by determining the vertex of 

the quadratic parabola. Therefore we get: 
10 3 2

0.1737
82

r
+ 

=   

 

 A 15.17:  

Medium figure: The large circle is the incircle of the equilateral triangle with side length 1, i.e. its radius is 

one third as large as its height, so 1
6

3s =  . Tangents through the points of contact separate smaller 

equilateral triangles from the large equilateral triangle. For the circles at the corners it applies that they are 

incircles of these "remaining" equilateral triangles, i.e. they have a radius r that is one third as large as the 

height of these equilateral partial triangles, thus: 1 1 1
3 6 18

3 3 0.096r =   =   .  
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So we get for the area: 
9

1

324

1

36

1 )333( =+= A  , that is 80,6% oft he area 1
4

3TriangleA =  . 

Right figure: Here all circles have the same size; they are incircles of the 4 equilateral triangles of the same 

size, which are obtained by drawing the tangents through the points of contact. The following therefore 

applies here: 1
12

3r =  , i.e. =
12

1A ; the covered portion therefore is 60.5%. 

Left figure: If you connect the centres of the three large circles with each other, you get an equilateral 

triangle with side length 2r. If you then drop the perpendiculars from these centres onto the sides of the 

triangle, you see: The height of the initial triangle is as great as the height of the inner triangle of the centre 

points plus r (below) and plus 2r (above), thus: 1 2
2 2

3 3 2rr r = +  + . Resolved to r this is: 
3 1

4
r −= .  

Before one now painstakingly determines the radius of the inner circle, one should rather consider the 

geometric situation in general: 

One can always regard the corner circles with radius r as incircles of 

equilateral triangles, which are created by the tangents through the 

points of contact with the centre circle.  

Then the following applies to the height h of these triangles in the 

corners: h = 3r . 

The distance of the centre of the initial triangle from the three vertices 

of the triangle (radius of the circumcircle) is  

2 1 1
3 2 3

( 3) 3h s+ =   =  , therefore 1
3

3 3s r=  −  

Thus the following applies to the covered part of the equilateral 
triangle: 

2 2 2 2 2 2 21 1 1
3 3 3

(3 ) (3 ( 3 3 ) ) (3 2 3 9 ) (12 2 3 )A r s r r r r r r r   =  + =  +  − =  + −   + =  + −   .  

This is the term of a quadratic function with the variable r: 
2 1 1

6 36
12 ( 3 )A r r=  −   +  

The minimum of the function is at 0.144, i.e. for the case where four equally sized circles are drawn. The 
maximum of the function must lie at one of the two boundary values of the definition set. This domain is 

given by the interval 1 1
18 4

3 0.096 ( 3 1) 0.183r     −  . 

The following illustration shows that the maximum coverage exists if the inner circle of the equilateral triangle 
is drawn first and then the smaller circles are drawn in each of the corners. 
 

 
 

 A 15.18:  

If we denote the sides of the triangle (as usual) with a (short cathetus), b (long cathetus) and c (= 1), then the 

following applies: 
2 2 1a b+ = , the following also applies to the area: 

2 1
2

(2 ) 4 1r a b+    = . Further applies: 

2b a r= + , so we have 
2 2 2 2(2 ) ( ) 2r b a b ab a= − = − + . But these equations are not independent, as you 

can see if you insert into the equation for the area: 
2 22 2 1b ab a ab− + + = . 

5 0 %

5 5 %

6 0 %

6 5 %

7 0 %

7 5 %

8 0 %

8 5 %

9 0 %

0 ,0 9 0 ,1 0 0 ,1 1 0 ,1 2 0 ,1 3 0 ,1 4 0 ,1 5 0 ,1 6 0 ,1 7 0 ,1 8 0 ,1 9
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The formula for the radius of an incircle in a right-angled triangle helps further here: 1
2

( )r a b c=  + − . 

Insert in 2b a r= +  we get:  ( 1)b a a b= + + − , i.e. 2a = 1, so we see, that the triangles are half equilateral 

triangles. Therefore it applies 1
2

3b =   and therefore 

1 1 1 1 1 1 1
2 2 2 2 2 2 4

( 3 1) ( 3 ) ( 3 1) 0.183r =  +  − =   − =  −  . 

Note: For the area A of a right-angled triangle with an incircle radius r, the following applies 

 
2 21 1

2 2
2 2A x r y r r x r y r r=    +    + =  +  +  . 

On the one hand side we have 

2 2 2 2

2

( ) ( ) ( ) ( )A x r r y r r r x r r y r r r

a r b r r

=  + +  + − = +  + +  −

=  +  −
 

on the other hand we have 
2 2( )A x y r r c r r= +  + =  + ,  

so we get: 
2 2a r b r r c r r +  − =  + , i.e. a b r c r+ − = +   2a b c r+ − = , and therefore 

1
2

( )r a b c=  + −  

 

 A 15.19:  

 

rectangular triangle with blue hypotenuse 
2 2 21 1

1 12 2
( ) ( ) (1 )r r+ + = − , thus 1

1 2
3r =  and so 1

1 6
r = . 

rectangular triangle with red hypoteuse: 
2 2 21

2 22
(1 ) ( ) (1 )r r− + = + , thus 1

2 4
4r =  and so 1

2 16
r =  

 

For both rectangular triangles applies: 

2 2 21 1
1 12 2

(1 ) ( ) ( )r r− + = + , thus 13 1r =  and therefore  1
1 3
r = . 

2 2 21 1
1 2 2 12 2

( ) ( ) ( )r r r r+ + + = + , thus 
2 2 21 1 1 1

2 23 2 2 3
( ) ( ) ( )r r+ + + = + ; from this we get:   

2 2 251 2 1
2 2 2 29 3 4 36

r r r r+ + + + + =     
2 5 1

2 23 3
2r r+ =    

25 49
2 12 144

( )r + =   1
2 6

r = . 
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The following relationship exists between the two radii r1 and r2 (distance of the circle with radius r2 from the 

lower side of the square): 1
2 12

1 2 2r r− = − , thus 1
2 1 4

r r= +  

In the right-angled triangle below, the following applies: 
2 2 21

1 12
( )r x r+ = − , thus 

2 2 21 1
1 1 12 4

( )x r r r= − − = − . 

The following applies to the next right-angled triangle lying above: 
2 2 2

2 1 1 2(1 ) ( )r r x r r− − + = + .  

If we insert 1
2 1 4

r r= + , we get: 
2 2 21 1

1 1 1 14 4
(1 ( ) ) ( )r r x r r− + − + = + + , so we have 

2 2 23 1
1 14 4

( 2 ) (2 )r x r− + = +  and further 
2 2 29 1

1 1 1 116 16
3 4 4r r x r r− + + = + +    

2 1
1 2

4x r= −  

From the two equations we get: 
2 1 1

1 12 4
4x r r= − = − , thus 3

1 4
5r = , i.e. 3

1 20
0.15r = = and further 2 0.4r =  

and 
2 1

2
4 0.15 0.1x =  − = , therefore 0.1 0.316x =  . 

 

For the left right-angled triangle we have 
2 2 2(1 ) (2 )r r r+ − = , i.e.  

2 1
2

r r+ =  and further 
21 1 1

2 2 4
( )r + = + , 

i.e. 1
2

( 3 1) 0.366r =  −  .  

Fort he right-angled triangle above we have: 

2 2 2( ) ( ) (2 )x r x r r+ + + = , thus 
2 2( ) 2x r r+ =  and therefore ( 2 1)x r= −   and 

1
2

( 2 1) ( 3 1) 0.152x = −   −   

 

The inscribed square has the side length 2 . For half the side length of the square and the circles inside it 

applies 1
2

2 2r r+  =  , therefore 

1
2

2 2 ( 2 1)
1 2 0.293

22 ( 2 1)
r

 −
= = = −  

 +
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Because of 1
2

1 2 2x= +   it applies for the radius x of the circles outside the triangle :  

1 1
2 4

2 0.146x = −   , i.e., this radius is half that of the inner circles. 

     

The diameter 2r of the circles lying outside the equilateral triangle is half the radius of the initial circle, i.e. the 

radius r of these circles is r = ¼.    

From the radius 1 of the circumcircle of the equilateral triangle with side length s results in 2
3 2

3 1s  = , thus 

3s = . The following applies to the radius x of an incircle of a right triangle 1
2

( )x a b c=  + − , see A 15.18, 

here is 1
2

a = ,  1
2

3b =   and c = 1. Therefore we have: 1 1 1 1
2 2 2 4

( 3 1) ( 3 1) 0.183x =  +  − =  −  . 

 

 A 15.20:  

 

The centres of the small circles are D and E. The radius r of these circles is the same as the lengths of CD, 

DE, EF, DX, XE, AD, AE. The triangle DEX is therefore an equilateral triangle and the following applies: 

1
2

3XM AM r= =   , thus 3= rAX . 

The centres of the large circles are also D and E. The radius R of these circles is as large as the lengths of 

CE, DF, EB, DB, namely 2R r=  . In the right-angled triangle MEB applies: , i.e. 
22 21

2
( ) (2 )r MB r+ =  

From this we get 
2 215

4
MB r= , therefore 

15

2
MB r= . 

Therefore the following proportions apply: 

15 1
2 2

2 3 2 3 2 3 2

3 15 3 5 3 3 5 1

AX MX r

XB MB MX r r

 
= = = = = =

−  −   −  − −
 and also 

15 1
2 2

2 3 2 3 2 3 2 1

3 15 3 5 3 3 5 1

AX MX r

AB MB AM r r

 
= = = = = =

+  +   +  + +
. 
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Chapter 16 

 

 A 16.1:   

n  k  
2n  

2k  kn + )1(  )( k  )()1( kkn −+  

1 1 1 1 2 1 1 

2 3 4 5 9 4 5 

3 6 9 14 24 10 14 

4 10 16 30 50 20 30 

5 15 25 55 90 35 55 

6 21 36 91 147 56 91 

7 28 49 140 224 84 140 

8 36 64 204 324 120 204 

 
 

n  
3n  

3k  
3)1( kn +  

3( k  )()1( 33 kkn −+  
4k  

4k  

1 1 1 2 1 1 1 1 

2 8 9 27 10 17 16 17 

3 27 36 144 46 98 81 98 

4 64 100 500 146 354 256 354 

5 125 225 1350 371 979 625 979 

6 216 441 3087 812 2275 1296 2275 

7 343 784 6272 1596 4676 2401 4676 

8 512 1296 11664 2892 8772 4096 8772 

 

 A 16.2:   

c(n+1) – c(n) =  ∙ (n + 1)² +  ∙ (n + 1) +  –  ∙ n² –  ∙ n  –  = 2 ∙ n + ( + )  

If you compare the coefficients with b(n) = u ∙ n + v you get 

 = ½ ∙ u  and from that v = ½ ∙ u +    = v – ½ ∙ u 

 

 A 16.3:  

• Sum of the first n fourth powers 

Approach with a 5th-degree function: s(n) = a · n5 + b · n4 + c · n³ + d · n² + e · n + f 

The table shows:  

s(0) = 0; s(1) = 1; s(2) = 17; s(3) = 98; s(4) = 354; s(5) = 979. Because of s(0) = 0 it follows: f = 0.  

A linear system of equations with 5 equations and 5 variables must be solved. 
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9795251256253125

354416642561024

98392781243

172481632

1

=++++

=++++

=++++

=++++

=++++

edcba

edcba

edcba

edcba

edcba

  .  

The solution is  







−

30

1
;0;

3

1
;

2

1
;

5

1 . 

Therefore applies:   

nnnnn
30

1
³

3

1

2

1

5

1
...21 45444 −++=+++  

• Sum of the first n fifth powers 

Approach with a 6th-degree function:   

s(n) = a · n6 + b · n5 + c · n4 + d · n3 + e · n² + f ∙ n + g 

s(0) = 0; s(1) = 1; s(2) = 33; s(3) = 276; s(4) = 1300; s(5) = 4425; s(6) = 12201.  

Because of s(0) = 0 it follows g = 0.  

A linear system of equations with 6 equations and 6 variables must be solved. 

122016362161296777646656

4425525125625312515625

13004166425610244096

276392781243729

33248163264

1

=+++++

=+++++

=+++++

=+++++

=+++++

=+++++

fedcba

fedcba

fedcba

fedcba

fedcba

fedcba

  .  

The solution is  







− 0;

12

1
;0;

12

5
;

2

1
;

6

1 . 

Therefore applies: 

24565555

12

1

12

5

2

1

6

1
...321 nnnnn −++=++++  

 

 A 16.4:  

• Sum of the first n cube numbers 

[ a · n4 + b · n³ + c · n² + d · n + e ] + (n+1)³ = a · (n+1)4 + b · (n+1)³ + c · (n+1)² + d · (n+1) + e   

a · n4 + b · n³ + c · n² + d · n + e + (n³ + 3 · n² + 3 · n + 1) =  

 a · (n4 + 4n³ + 6n² + 4n +1) + b · (n³ + 3n² + 3n + 1) + c · (n² + 2n + 1) + d · (n + 1) + e   

n4 · (a – a) + n³ · (b + 1 – 4a – b) + n² · (c + 3 – 6a – 3b – c) +  

  n · (d + 3 – 4a –  3b – 2c – d) + (e + 1 – a – b – c – d – e) = 0   

n³ · (1 – 4a) + n² · (3 – 6a – 3b) + n · (3 – 4a –  3b – 2c) + (1 – a – b – c – d) = 0   

and from that a = 
4

1
, b = 

2

1
, c = 

4

1
, d = 0 (and e = 0 because of s(0) = 0). 
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• Sum of the first n fourth powers 

[ a · n5 + b · n4 + c · n³ + d · n² + e ∙ n + f ] + (n+1)4  

 = a · (n+1)5 + b · (n+1)4 + c · (n+1)³ + d · (n+1)² + e ∙ (n+1) + f   

a · n5 + b · n4 + c · n³ + d · n² + e ∙ n + f + (n4 + 4 · n³ + 6 · n² + 4 ∙ n + 1)  

 =  a · (n5 + 5n4 + 10n³ + 10n² +5n + 1) + b · (n4 + 4n³ + 6n² + 4n +1) + c · (n³ + 3n² + 3n + 1)  

 + d · (n² + 2n + 1) + e · (n + 1) + f   

n5 · (a – a) + n4 · (b + 1 – 5a – b) + n³ · (c + 4 – 10a – 4b – c) + n² · (d + 6 – 10a –  6b – 3c – d)  

 + n ∙ (e + 4 – 5a – 4b – 3c – 2d – e) + (f + 1 – a – b – c – d – e – f) = 0   

n4 · (1 – 5a) + n³ · (4 – 10a – 4b) + n² · (6 – 10a – 6b – 3c) + n ∙ (4 – 5a – 4b – 3c – 2d) +  

 (1 – a – b – c – d – e) = 0   

and from that a = 
5

1
, b = 

2

1
, c = 

3

1
, d = 0, e = 

30

1
−    (and f = 0 because of s(0) = 0). 

 

 A 16.5:  

dncnnbnnna

nndncnbna

+




















+








+





















+








+








+





















+








+








+








=









+








+








++++

1

1

0

1

2

2

1

2
²

0

2

3

3

2

3
²

1

3
³

0

3

1
2

2

1

2
²

0

2
²³

 

therefore 

0
1

1

2

2

3

3

2

2

1

2

2

3

1

2
²

1

3

0

2
=





















−








−








−








+





















−








−








+





















−








cbanbana  

From this we get: 

a







−









1

3

0

2
= 0  and  ba 








−








−









1

2

2

3

1

2
 = 0  and  cba 








−








−








−









1

1

2

2

3

3

2

2
= 0 

 

 A 16.6:  

 

 

   

)...321()1(

³)...³3³2³1(...³)3³2³1(³)2³1(³1...321

3333

4444

nn

nn

+++++=

++++++++++++++++
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 

)...321()1(

²
4

1
³

2

1

4

1
...²2

4

1
³2

2

1
2

4

1
²1

4

1
³1

2

1
1

4

1
...321

3333

4444444

nn

nnnn

+++++=

















++++








+++








+++++++

 

  ( ) ( ) ( )

)...321()1(

²...²2²1
4

1
³...³2³1

2

1
...21

4

1
...321

3333

4444444

nn

nnnn

+++++=









++++++++++++++++

   

( ) ( )²...²2²1
4

1
)...321(

2

1
...21

4

5 3333444 nnnn +++−++++







+=+++    

( )²...²2²1
4

1

5

4
)...321(

2

1

5

4
...21 3333444 nnnn +++−++++








+=+++  

and further 









++−








++








+=+++ nnnnnnnn

6

1
²

2

1
³

3

1

5

1
²

4

1
³

2

1

4

1

5

2

5

4
...21 4444    

nnnnnnnnnn
30

1
²

10

1
³

15

1

10

1
³

5

1

10

1
³

5

1

5

2

5

1
...21 2445444 −−−+++++=+++  

nnnnn
30

1
³

3

1

2

1

5

1
...21 45444 −++=+++  

 

 A 16.7: 

In the first case, the equation can be transformed as follows: 
3

12

3

1

3

2

...321

²...²3²2²1 +
=+=

++++

++++ n
n

n

n . 

This is possible because there is a product on the right-hand side of the equation. 

Such a transformation is not possible when deriving the sum of the cube numbers because there are two 

sum terms on the right-hand side of the equation and no simple transformation is possible. 

 

 A 16.8: 

 

nnn

nnnnnn

nnnn

n

6

1

2

1

3

1

...
123

)2()1(
2

12

)1(
3

1
10

3
2

2
3

1
1

0
0

²...²3²2²1

23 ++=

=


−−
+



−
++=









+








+








+








=

++++
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 A 16.9: 

  

12345

)4()3()2()1(
24

1234

)3()2()1(
60

123

)2()1(
50

12

)1(
15

1
10

5
24

4
60

3
50

2
15

1
1

0
0...321 4444



−−−−
+



−−−
+



−−
+



−
++=









+








+








+








+








+








=++++

nnnnnnnnnnnnnnn

nnnnnn
n

 

 

 A 16.10:  

• Sum of the first n cube numbers 

From  n · (n + 1) · (n + 2) = n³ + 3n² + 2n  we get 

4

)3()2()1(
)...321(2²)...²3²2²1(3³)...³3³2³1(

+++
=++++++++++++++

nnnn
nnn ,  

therefore 

2

2

)1(

2

)1(

2

)1(
2)12(

2

)3()2(

2

)1(

2

)1(
2

6

)12()1(
3

4

)3()2()1(
³...³3³2³1








 +
=

+


+
=








−+−

++


+
=

+
−

++
−

+++
=++++

nnnnnn
n

nnnn

nnnnnnnnn
n

 

 

• Sum of the first n fourth powers 

From  n · (n + 1) · (n + 2) ∙ (n + 3) = n4 + 6n³ + 11n² + 6n  we get 

5

)4()3()2()1(
)3()2()1(...654354324321

++++
=+++++++

nnnnn
nnnn  

5

)4()3()2()1(

)...321(6²)...²3²2²1(11³)...³3³2³1(6)...321( 4444

++++
=

+++++++++++++++++++

nnnnn

nnnn
 

therefore 
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 

 

  )13²3()12(
30

)1(
1²9³6

30

)1(

905511045²45144156²54³6
30

)1(

90)12(55)1(45)4()3()2(6
30

)1(

2

)1(
6

6

)12()1(
11

4

)²1(²
6

5

)4()3()2()1(

)...321(6²)...²3²2²1(11³)...³3³2³1(6
5
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=
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 A 16.11:  

• Sum of the first n cube numbers 

From (k+1)4 – k4 = 4k³ + 6k² + 4k + 1 we get from an analogously constructed table  

(n + 1)4 – 14 = 4 ∙ (1³ + 2³ + 3³ + … + n³) + 6 ∙ (1² + 2² + 3² + … + n²) + 4 · (1 + 2 + 3 + … + n) + n · 1  

therefore 

4 ∙ (1³ + 2³ + 3³ + … + n³)  = (n + 1)4 – 14 – 6 ∙ (1² + 2² + 3² + … + n²) – 4 · (1 + 2 + 3 + … + n) – n · 1  

= n4 + 4n³ + 6n² + 4n + 1 – 1 – 2n³ – 3n² – n – 2n² – 2n – n 

= n4 + 2n³ + n² = n² ∙ (n² + 2n + 1) = n² ∙ (n + 1)² 

thus 

(1³ + 2³ + 3³ + … + n³)  = ¼ ∙ n² ∙ (n + 1)² 

 

• Sum of the first n fourth powers 

From  (k+1)5 – k5 = 5k4 + 10k³ + 10k² + 5k + 1 we get from an analogously constructed table 

(n + 1)5 – 15  

= 5 ∙ (14 + 24 + ... + n4) + 10 ∙ (1³ + 2³ + … + n³) + 10 ∙ (1² + 2² + … + n²) + 5 · (1 + 2 + … + n) +  n ∙ 1 

therefore 

5 ∙ (14 + 24 + ... + n4)  

= (n + 1)5 – 15 – 10 ∙ (1³ + 2³ + … + n³) – 10 ∙ (1² + 2² + … + n²) – 5 · (1 + 2 + … + n) –  n ∙ 1 

= n5 + 5n4 + 10n³ + 10n² + 5n + 1 – 1 – 2,5n4 – 5n³ – 2,5n² – 10/3 ∙ n³ – 5n² – 5/3 ∙ n – 2,5n² – 2,5n – n 

= n5 + 5/2 ∙ n4 + 5/3 ∙ n³ – 1/6 ∙ n   

thus 

nnnnn
30

1

3

1

2

1

5

1
...321 3454444 −++=++++  

 

 A 16.12:  

  







−++=++++=


















+








+








+








+








=++++=

13451

4

2

3

3

2

4

1

5

0

1

4

2

3

3

2

4

1

5

0

4444

4

6

1

3

5

2

5

5

1
510105

4

1

4

5

3

5

2

5

1

5

0

5

5

1
...321)(

nnnnnBnBnBnBnB

nBnBnBnBnBnnS
 

with B0 = 1, B1 = ½, B2 = 1/6 , B3 = 0 and B4 = – 1/30 .  
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with B0 = 1, B1 = ½, B2 = 1/6 , B3 = 0, B4 = – 1/30, B5 = 0 

 

 A 16.13:  

• Sum of the first n square numbers 

Approach with a 3rd degree function and the points P0 (0|0), P1 (1|1), P2 (2|5), P3 (3|14):  
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• Sum of the first n cube numbers 

Approach with a 4th degree function and the points P0 (0|0), P1 (1|1), P2 (2|9), P3 (3|36), P4 (4|100): 
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Chapter 17 

 

 A 17.1:  

Figure 1 and 3: Application of the Pythagorean theorem to the right-angled triangle whose hypotenuse is a 

side of the large triangle and whose sides in the large triangle are altitude and hypotenuse segment: 

a² = h² + p² and b² = h² + q² 

Figure 2 and 4: Since according to Euclid’s theorem the square on one leg is equal in area to the rectangle 

of the corresponding segment of the hypotenuse and the hypotenuse (a² = c ∙ p and b² = c ∙ q), it follows that 

the square above the altitude is equal in area to the two remaining rectangles coloured purple:  

h² = p ∙ (c – p) and h² = q ∙ (c  – q)  

(since c = p + q this is nothing else but the statement of Euclid’s right triangle altitude theorem) 

Figure 5: The total area of the two squares on the sides can thus be represented as the sum of the areas of 

the two squares above the hypotenuse segments and two mutually congruent residual rectangles that are 

equal in area to the square on the altitude: a² + b² = p² + q² + 2h²  

Of course, this can also be derived by (algebraic) transformation: 

a² + b² = c² = (p + q)² = p² + 2pq + q² = p² + 2h² + q²   

 

 A 17.2:   

(1) The points and sides of the figure to be examined are 
labelled as can be seen on the right. 

The figure is defined by the right-angled triangle ABC, i.e. 
by the right angle at C and the side lengths a and b. The 
figure is then divided into two parts.  

From this we can calculate: ²² bac +=  

 = tan-1(a/b) and  = 90° –  

It applies:  sin( )
a

c
 =   und  cos( )

b

c
 =  

The triangle ABC has the area A1 = ½ · a · b 

Triangle CGH:  
The triangle is congruent to the triangle ABC. 

 

 
Triangle AID: The sides b and c of the triangle are given as well as the angle 

 = (DAI) = 360° – (90° + 90° + ) = 180° –  . 

Because of sin(180° – ) = sin() and a = c ∙ sin() we get the area 

A2 = ½ · b · c · sin() = ½ · b · c · sin() = ½ · b · a = A1 

Triangle BEF: 

The sides a and c are given also the angle 

 = (FBE) = 360° – (90° + 90° + ) = 180° –  = 180° – (90° – ) = 90° + . 

Because of sin(90° + ) = cos() und b = c ∙ cos() we get the area 

A3 = ½ · a · c · sin() = ½ · a · c · cos() =  ½ · a · b = A1 

(2)  The length of side x can be calculated with help of the law of cosinus: 

x² = b² + c² – 2bc · cos() = b² + c² + 2bc · cos() = b² + (a² + b²) + 2b², thus  x² = a² + 4b² 

and because cos(180° – ) = – cos()  and  b = c · cos()  
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The length of side y can also be calculated with help oft he law of cosinus: 

y² = a² + c² – 2ac · cos() = a² + c² – 2ac · cos(90° + )  

= a² + c² + 2ac · sin() = a² + (a² + b²) + 2a², also   y² = 4a² + b²  

and because cos(90° + ) = – sin()  and  a = c · sin()  

Because of  z = c and c² = a² + b² we get: 

x² + y² + z² = a² + 4b² + 4a² + b² + a² + b² = 6 ∙ (a² + b²) = 3 ∙ (a² + b²) + 3 ∙ (a² + b²) = 3 ∙ (a² + b² + c²)  

(3) This is exactly what has been proven in (2). 

(4) Compared to equation (1) the calculation of the area of the triangles ABC and CGH changes.  

For the triangle ABC we have: A1 = ½ ∙ a ∙ b ∙ sin() = ½ ∙ b ∙ c ∙ sin() = ½ ∙ c ∙ a ∙ sin()  

In the triangle CGH we have for the angle at point C:  = (GCH) = 360° – (90° + 90° + ) = 180° –  . 

Therefore we get for the area: A4 = ½ ∙ a ∙ b ∙ sin() = ½ ∙ a ∙ b ∙ sin() = A1 

In the triangle AID we have: A2 = ½ · b · c · sin() = ½ · b · c · sin() = A1 

In the triangle BEF we have: A3 = ½ · a · c · sin() = ½ · a · c · cos() = A1 

Compared to equation (2) the calculation of x², y² und z² changes: 

x² = b² + c² – 2bc · cos() = b² + c² – 2bc · cos(180° – ) = b² + c² + 2bc · cos() 

y² = a² + c² – 2ac · cos() = a² + c² – 2ac · cos(180° – ) = a² + c² + 2ac · cos()  

z² = a² + b² – 2ab · cos() = a² + b² – 2ab · cos(180° – ) = a² + b² + 2ab · cos() 

Because of a² = b² + c² – 2bc ∙ cos(), i.e. 2bc ∙ cos() = b² + c² – a², and analogously we have 

2ca ∙ cos() = c² + a² – b², 2ab ∙ cos() = a² + b² – c²: 

x² + y² + z² = 2a² + 2b² + 2c² + b² + c² – a² + c² + a² – b² + a² + b² – c² = 3a² + 3b² + 3c² 

 

 A 17.3: 

As explained in the solution of A 17.2, it applies for the yellow triangle below: Au = ½ ∙ a ∙ b ∙ sin() 

and for the yellow triangle above (with the angle  = 360° – (90° + 90° + ) = 180° – ): 

Ao = ½ ∙ a ∙ b ∙ sin() = ½ ∙ a ∙ b ∙ sin() = Au 

With the designations of A 17.2 we get: 

c² + z² = c² + a² + b² + 2ab · cos() = c² + a² + b² +  a² + b² – c² = 2a² + 2b² = 2 ∙ (a² + b²) 

Tip: If instead of the green squares we look at the isosceles right-angled 

triangles half the size of the green squares and instead of the light blue 

squares we look at a quarter of each of them, these are isosceles right-

angled triangles, then the following figure by Hans Walser results  

red = yellow 

see also 

www.walser-h-m.ch/hans/Miniaturen/D/Drachenspirale/Drachenspirale.htm 
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The figures in Fig. 17.2b and Fig. 17.2c can be completed in different ways, for example like this: 

 

Above we have shown: c² + z² = 2 ∙ (a² + b²) 

Analogously we have in the left figure: 

x² + a² = 2 ∙ (b² + c²) und  

y² + b² = 2 ∙ (a² + c²) 

Therefore we get: 

x² + y²  = 2 ∙ (b² + c² + a² + c²) – a² – b² 

 = b² + a² + 4c² = a² + b² + 4 ∙ (a² + b²) 

 = 5 ∙ (a² + b²)   

 

Above we have shown: 

x² + y² + z² = 3 ∙ (a² + b² + c²) 

Here we have  

u² + b² = 2 ∙ (x² + c²)   and 

w² + a² = 2 ∙ (b² + z²)   and 

v² + c² =  2 ∙ (a² + y²), 

thus 

u² + v² + w² + a² + b² + c² 

=   2 ∙ (x² + c²) + 2 ∙ (z² + b²) + 2 ∙ (y² + a²),  

i.e. 

u² + v² + w² 

=   2 ∙ x² + c² + 2 ∙ z² + b² + 2 ∙ y² + a² 

= 2 ∙ (x² + y² + z²) + (a² + b² + c²) 

= 7 ∙ (a² + b² + c²) 

 

Please also look at:  

http://www.walser-h-m.ch/hans/Miniaturen/Q/Quadrate_ansetzen/Quadrate_ansetzen.htm 

http://www.walser-h-m.ch/hans/Miniaturen/Q/Quadrate_ansetzen2/Quadrate_ansetzen2.htm 

http://www.walser-h-m.ch/hans/Miniaturen/P/Pythagoras-Schmetterling/Pythagoras-Schmetterling.htm 

 

 A 17.4:   
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 A 17.5:  

Draw the smaller square on the leg with the area a² at the bottom left into the larger square of the leg with 

the area b². The remaining area with the area b² – a² is divided into the light blue coloured square with the 

area (b – a)² and the two congruent rectangles with the area (b – a) ∙ a. 

The lower red line separates partial areas: 

– a green coloured trapezoid of width b – a and the two sides parallel to each other with the side lengths  

a and a²/b  

– a small green coloured triangle with the sides b – a and a – a²/b 

– a yellow-coloured triangle with the sides a and a – a²/b 

– a yellow-coloured trapezoid with the parallel sides a and a²/b and the height a 

These four coloured puzzle pieces and the light blue coloured square are placed in the square on the 

hypotenuse. The smaller yellow coloured square and the right green and light blue-coloured rectangular strip 

of the larger square have been used. The left part of the square (coloured white and yellow in the third 

illustration) is divided by the upper red line into two congruent right-angled triangles, which fill the rest of the 

square on the hypotenuse without being coloured. 

 

 A 17.6: 

The areas of the triangles are calculated according to the formula nAn = 1
2
1 . With the 16th triangle 

there is not yet a full circle, with the 17th the total angle of 360° is exceeded. These angles result for n = 1, 2, 

... from 
1

tan( )
n

 =   

n area area cumulated angle angle cumulated 

1 0,500 0,500 45,000 45,000 

2 0,707 1,207 35,264 80,264 

3 0,866 2,073 30,000 110,264 

4 1,000 3,073 26,565 136,829 

5 1,118 4,191 24,095 160,924 

6 1,225 5,416 22,208 183,132 

7 1,323 6,739 20,705 203,837 

8 1,414 8,153 19,471 223,308 

9 1,500 9,653 18,435 241,743 

10 1,581 11,234 17,548 259,291 

11 1,658 12,892 16,779 276,070 

12 1,732 14,625 16,102 292,172 

13 1,803 16,427 15,501 307,673 

14 1,871 18,298 14,963 322,637 

15 1,936 20,235 14,478 337,114 

16 2,000 22,235 14,036 351,150 

17 2,062 24,296 13,633 364,783 

18 2,121 26,417 13,263 378,046 

 

The total area of the Pythagorean spiral can (for n < 18) be modelled approximately by the power function f 

with f(x) = 0,465 ∙ x1,386 (cf. EXCEL sheet with coefficient of determination 99.9 %). 
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 A 17.7:   

First possibilty:  

Start left with the right-angled triangle with the sides a0, b0, c0, then we have a0² + b0² = c0². If one designates 
the right-angled triangles that become smaller towards the right in the same way, i.e. a1, b1, c1, a2, b2, c2 etc., 
then we have: bn+1 = an. 

Therefore it follows:  an+1 : bn+1 = an : bn, thus:  

1 1
n n

n n n

n n

a a
a b a

b b
+ +=  =   and analogously: 1

n
n n

n

a
c c

b
+ =  , therefore we get 

2

0
1

0

a
a

b
=  ; 

2
2 3

2 0 0
2 1 2

1 0 0 0

1 1a a
a a

b b a b

 
=  =  = 

 
 ;  

2
3 6 4

2 0 0 0 0
3 2 2 4 2 3

2 0 1 0 0 0

1 1a a b a
a a

b b a b a b

 
=  =  =  = 

 
; 

2
4 8 2 5

2 0 0 0 0
4 3 3 6 3 4

3 0 2 0 0 0

1 1a a b a
a a

b b a b a b

 
=  =  =  = 

 
 etc., i.e. starting with a0 we get the elements of a sequence by 

multiplication with the constant factor 
0

0

a
q

b
= . This also results from considerations about similarity. 

Further applies: 
0

1 0

0

a
c c

b
=   ;  

2 2

0 0 01
2 1 0 02

1 0 0 0 0

1a a aa
c c c c

b b a b b
=  =    =   ;  

3 2 3 2 3

0 0 0 0 0 02
3 2 0 0 02 2 2 2 2 3

2 0 1 0 0 0 0 0

1a a a b a aa
c c c c c

b b a b b a b b
=  =    =    =   etc., i.e. starting with c0 we get the elements of 

a sequence by multiplication with the constant factor 
0

0

a
q

b
= . 

This also applies for the other side: b1 = a0; 

2

0
2 1

0

a
b a

b
= = ; 

3

0
3 2 2

0

a
b a

b
= =  etc., i.e. also the other sides are 

elements of a sequence with constant factor 
0

0

a
q

b
= . 

Therefore applies for the areas of the triangles: 

y = 0,465x
1,386

R
2
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0 0 1 1 2 2 3 3

2 3 2

0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0

1 3 5

2 2 20 0 0
0 0 0 0 0

0 0 0

1 1 1 1
...

2 2 2 2

1
...

2

1
...

2

TA a b a b a b a b

a a a a a
a b a a a a a a

b b b b b

a a a
a b a a a

b b b

=   +   +   +   +

          
 =   +   +    +    +         
           

     
=   +  +  +  +     

     

2 1 3 5 2 2 4
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0
0

0
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0 0 0 0 0

1 1 1 1
... 1 ...
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b
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 
 
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   =   +   + + + =   +    + + +   

=   +    =   +   
−  

−  
 
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b
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=   
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And for the areas of the inside lying squares we have: 

( ) ( ) ( )
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0 1 2 3 4 0 0 1 2 3
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2 2
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0 0 0 0
0

0

... ...
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1 1
1

1
1

Sq insideA b b b b b b a a a a

b a q a q a q a b a q a q a q a

b a
b a b a b a b

q b a b aa

b

− = + + + + + = + + + + +

= + +  +  +  + = + +  +  +  +

 
= +  = +  = +  =  +
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2 4
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0 2 2 2 2
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b b
b
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

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− −

 

And for the areas of the outside lying squares we have: 

( ) ( ) ( ) ( )

( )
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2 2 2 2 20 0
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0
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1
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b
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− 
 

 

Thus we have in total: 

( )
2 4 2

2 20 0 0
0 0 0 02 2 2 2 2 2

0 0 0 0 0 0

2 2
2 2 2 2 20 0

0 0 0 0 0 0 0 0 02 2 2 2

0 0 0 0

2 2 2

2 3

D Qa Qi

b b b
A A A A a b a b

b a b a b a

b b
a b b a b a a b b

b a b a

=  +  + =   +  + + 
− − −

   =   +  + + =  +  +    − −

 

 

Second possibity 

Use the relationship from A 17.3. Here it was shown that two of the squares coloured violet are twice as 

large as two of the squares coloured light blue.   
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 A 17.8:   

The entire figure is defined by the lengths of the sides of the initial figure, i.e. by a and b: 

In the first step, the whole figure consists of the square on the hypotenuse with area c² = a² + b², the right-

angled triangle with area ½ ∙ a ∙ b and the two squares on the sides, i.e. A1 = 2 ∙ (a² + b²) + ½ ∙ a ∙ b  

In the next step, a right-angled triangle and two new squares on the sides are added to the left and to the 

right respectively, the areas of each of which are of the same size as the squares on the hypotenuse 

according to the Pythagorean theorem.  

From the following diagram it is clear that the four squares of the 2nd step coloured light blue are as large as 

the two squares of the 1st step coloured green, which in turn are together as large as the square on the 

hypotenuse of the 1st step. 

 

Since in the first step the squares already have an area of 2 ∙ (a² + b²) and with each further step an area of 

a² + b² is added, the total area of the squares after n steps is (n + 1) ∙ (a² + b²). 

If you omit all the squares in a Pythagorean tree, the result is a tree of right-angled triangles. Here, the two 

triangles of the 2nd step together are as large as the triangle of the 1st step, cf. the figure on the right and 

the explanations in section 17.7, so the total area of the triangles after n steps is n ∙ ½ ∙ a ∙ b.    

             

The total area of the figure thus grows with n beyond all limits – if one does not consider that the branches 

already overlap after a few steps. 
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For a = b, i.e.  = 45°, squares will touch each other at the 3rd step of the figure. For   39.4°, i.e.  

a  0.821 ∙ b, squares will touch each other at the 3rd step of the figure in the corners of two squares.  

For smaller angles , there are still no intersections at the 3rd step. 

         

For   27.7°, i.e. a ≈ 0.525 ∙ b, two branches touch at the 4th step; overlaps occur at larger angles. For  

  24.8°, i.e. a ≈ 0.462 ∙ b, two branches touch at the 5th step; at larger angles overlaps occur. 

There is still a lot to investigate! 

Although the total area of the triangles and squares grows beyond all limits, the actual area occupied is 

limited, cf.  

• https://en.wikipedia.org/wiki/Pythagoras_tree_(fractal) 

 

 A 17.9:  

The area of an equilateral triangle with side length s can be calculated by 
1

3 ²
4

A s=   , because for the 

area we have A = ½ ∙ s ∙ h and the altitude h can be calculated with the Pythagorean theorem from  

h² + (½ ∙ s)² = s², thus h² = ¾ ∙ s².  

This also results from the following general consideration: The area An of a regular n-sided polygon is the  

n-fold of the area of the n isosceles triangles with base side s and leg r, where applies (cf. Chap. 1): 

180
2 tan

s
h

n

=
 

  
 

, thus 
1 ²

1802
4 tan

n

s
A n s h n

n

=    = 
 

  
 

. 

For n = 3 we have 
180

tan 3
n

 
= 

 
 and therefore 

3

² ²
3 3

44 3

s s
A =  = 


. 

For n = 5 we have 
180

tan 5 2 5
n

 
= − 

 
 and therefore 

5

² 5 5 2 5 5 5 2 5
5 ² ²

4 4 25 204 5 2 5 5 2 5 5 2 5

5 5 2 5 1 1
² 5 2 5 5 ² 25 10 5 ²

4 4 45

s
A s s

s s s

+ +
=  =   =  

− − −  +

+
=   =  +   =  + 

. 

For n = 6 we have 
180 3

tan
3n

 
= 

 
 and 

6

3 ² 3
6 3 ²

24 3

s
A s


=  =  


. 

For n = 8 we have 
180

tan 2 1
n

 
= − 

 
 and 8

² ² 2 1
8 2 2 ( 2 1) ²

4 ( 2 1) 2 1 2 1

s s
A s

+
=  =   =  + 

 − − +
. 
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For semicircles we have:  A = ½ ∙ (½ ∙ s)² ∙  = ²
8

s

  . 

 

 A 17.10:   

The figure on the left is a special case of an isosceles right triangle that has been doubled. The four lunes 

above the sides of a square are equal in area to the square. 

In the illustration on the right, the generalisation of the Pythagorean theorem is applied to similar figures on 

the sides. Here we are dealing with little lunes above the hypotenuse of isosceles right-angled triangles. You 

can also formulate it like this: The two yellow-coloured lunes are equal in area to half of the triangle. The 

whole triangle is equal in area to the green-coloured lune. 

     

 

 A 17.11:  

The regular hexagon consists of six equilateral triangles whose sides are equal to the radius r of the 

circumcircle of the regular hexagon. The 6 semicircles above the sides of the hexagon have a total area of 

1 ² 3
6 ²

2 4 4
sc

r
A r =    =   , the hexagon an area of 

6

3
6 ²

4
A r=   , together we have an area of 

( )3
² 2 3

4
totalA r =   + . 

Subtracting from this the area of the circle with radius r gives the green-coloured lunes: 

( )3 3 4 3 1
² 2 3 ² ² 2 3 ² 2 3

4 4 3 4 3
A r r r r    

   
=   + −  =   + − =   −   

   
 

This is the same as the area of the yellow-coloured  

2

6

3 3 1
6 ² 2 3 ²

4 2 4 3

r
A r r 

   
=   −  =   −    

   
 

 

 A 17.12:  

     

We consider an isosceles right-angled triangle: The altitude of this triangle has the same length as half the 
hypotenuse and consequently the light blue coloured areas are the same size as the yellow coloured areas. 
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In contrast to lunes of Hippocrates, the semicircles on the legs are folded upwards. The blue areas then 
belong both to the area of the semicircles on the hypotenuse and to the folded-up semicircles on the sides 
and can therefore be omitted. However, since the two yellow areas belong to both semicircles, you need 
compensation areas – and these are precisely the blue areas, which are just as large as the yellow ones. 

Therefore we have: red = light-blue + yellow + green  

Instead of the semicircles, one can also accordingly consider half regular 8-sided polygons. And since the 
number of lunes on the sides of the half isosceles-rectangular triangles is even, it follows for the regular 
polygon that the number of vertices must be divisible by 4. 

 

 A 17.13:  

Figure on the left: Not drawn is the altitude to the hypotenuse and the two semicircles. The following applies 

to the areas of these two semicircles that are not drawn: 

left: Asc = light blue – violet   right: Asc = green – olive green  

thus: light blue + olive green = green + violet.  

Figure on the right: The two orange coloured semicircles on the hypotenuse segment p and the altitude h 

which is drawn downwards are together the same size as the yellow coloured semicircle, i.e.  

yellow = orange.  

Since the entire semicircle below the hypotenuse (i.e. olive green + orange) is as large as the two 

semicircles above the legs (yellow + green), it follows:    

green = olive green. 

 

 A 17.14: 

The area of the light blue semicircle on the hypotenuse is as large as that of the two dark blue semicircles on 

he other sides. These blue semicircles in turn are the same size as the green and red semicircles in the 

right-angled triangle (divided by the altitude), i.e. 

green + red = light blue, i.e. light blue - green = yellow. 

If you cut the green semicircles out of the light blue semicircle, you have the yellow coloured area, i.e. 

yellow = red. 

 

 A 17.15:   

The proof can be done, for example, with the help of the Pythagorean theorem. 

  

If we denote the radius of the semicircle with R and the radius of the larger semicircle below it with r, the 

radius of the twin circle with x and the distance of the centre of the twin circle from the diameter with y = CE, 

then the following relations can be established for y²: 

ADE: |AC|² + y² = |AE|², with |AC| =  |AD| – x = r – x  and  |AE| = r + x, 

therefore: y² = (r + x)² – (r – x)² = 4 ∙ rx  
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BCE: |BC|² + y² = |BE|², with |BC| = |BD| – x = 2r – R – x  and  |BE| = R – x , 

therefore: y² = (R – x)² – (2r – R – x)² = 4 ∙ (Rr + rx – Rx – r²). 

From this we get: rx = Rr + rx – Rx – r²  Rx = Rr – r²  and therefore 

( )r R r
x

R

 −
=  

 

In the part on the right side applies: 

BFH: |BF|² + v² = |BH|², with |BF| = 2r – R + u and |BH| = R – u,  

therefore: v² = (R – u)² – (2r – R + u)² = 4 ∙ (rR + ru – r²)   

FGH: |FG|² + v² = |GH|², with |FG| = R – r – u and |GH| = R – r + u, 

therefore: v² = (R – r + u)² – (R – r – u)² = 4 ∙ (R – r) ∙ u  

From this we get: Ru – ru = Rr + ru – r²  Ru = Rr – r²  and therefore 

( )r R r
u

R

 −
= . Thus we have  x = u. 

In the graphic visible on the Italian stamp, the proof is provided with the help of considerations about 

similarity. 

 

 A 17.16:  

The green coloured area is composed of the area of a semicircle with radius r, from which two semicircles 

with radius r/3 have been removed and a semicircle with radius r/3 has been added. 

Therefore the area applies: ½ ∙  ∙ 

2 2 2
1 1 8 4 2

² 2 ² ²
2 3 3 2 9 9 3

r r
r r r r   
      

  −  + =    =   =              

  

The light blue coloured circle has the diameter r + r/3, i.e. the radius 
2

3
r . The area of this circle is therefore 

the same as that of the green coloured area in the figure on the left. If you colour the non-coloured area in 

the figure on the right green, then the total green coloured area matches that in the first figure, if you colour it 

light blue, then the total light blue coloured area matches that in the second figure. 

 

 A 17.17:   

An isosceles-rectangular triangle is considered, which is divided by an altitude into two congruent partial 

triangles, which are themselves isosceles-rectangular. This process can be repeated as often as desired. 

The line begins at the upper endpoint of the altitude and leads to the centre point of the opposite 

hypotenuse, which is again the upper endpoint of an altitude and so on. In the next step, the triangle lying to 

the left of the altitude is selected. 
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As was shown in A 17.10, a lune on the hypotenuse has the same area as the triangle. 

The initial triangle has the area A = ½ ∙ g ∙ h = ½ ∙ (2h) ∙ h = h² = 1. Because of the continued bisection, the 

next triangles in the sequence each have half the area. As explained in chapter 8, the infinite sum 

1 1 1 1 1
1 ...

2 4 8 16 32
+ + + + + +   has the value 2. 

Note: The line has the length 

1 1 1 1 1 1 1 2 2 1
1 ... 2 2

12 4 8 16 32 2 1 2 1 2 11
2 2

+
+ + + + + + = = =  = +

− − +−

 

 

 A 17.18:   

(1) The quadrilateral is actually a triangle that is divided into two right-angled triangles by the altitude hc on c. 

Here applies:  hc² = a² – p² = b² – q², therefore  a² + q² = b² + p². 

(2) If x = y, the quadrilateral is axisymmetrical with regard to a diagonal, e.g. in the case of a symmetrical 

kite, then a = d and b = c apply. Then the condition a² + c² = b² + d² is fulfilled a fortiori. 

 

 A 17.19:  

The next sums of two square numbers for which more than one representation exist: 

125 = 5² + 10² = 2² + 11²   130 = 3² + 11² = 7² + 9²  

145 = 1² + 12² = 8² + 9²   170 = 1² + 13² = 7² + 11² 

185 = 4² + 13² = 8² + 11²  200 = 2² + 14² = 10² + 10² 

205 = 6² + 13² = 3² + 14²  221 = 5² + 14² = 10² + 11² 

250 = 5² + 15² = 9² + 13²  260 = 2² + 16² = 8² + 14²  

The fact that numbers with the final digit 0 or 5 predominate here can be explained as follows: 

The only possible final digits of square numbers are: 

0² ≡ 0, 1² ≡ 1, 9² ≡ 1, 2² ≡ 4, 8² ≡ 4, 3² ≡ 9, 7² ≡ 9, 4² ≡ 6, 6² ≡ 6, 5² ≡ 5 (mod 10) 

If one adds square numbers with these final digits, then the following combinations result: 

 0 1 4 5 6 9 

0 0 1 4 5 6 9 

1 1 2 5 6 7 0 

4 4 5 8 9 0 3 

5 5 6 9 0 1 4 

6 6 7 0 1 2 5 

9 9 0 3 4 5 8 

 

 

 A 17.20: 

(1) In example 1 the triples (5 ; 12 ; 13) and the 3-fold of the primitive triple (3 ; 4 ; 5) were considered, in 

example 2 the triples (5 ; 12 ; 13) and the 4-fold of the primitive triple (3 ; 4 ; 5), in example 3, the 5-fold of 

the primitive triple (3 ; 4 ; 5) and the 3-fold of the primitive triple (5 ; 12 ; 13), in example 4, the 5-fold of the 

primitive triple (3 ; 4 ; 5) and the 4-fold of the primitive triple (5 ; 12 ; 13). 
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(2) If one considers the 8-fold of the primitive triple (3 ; 4 ; 5) and the 3-fold of the primitive triple (8 ; 15 ; 17), 

then the triples (24 ; 32 ; 40) and (24 ; 45 ; 51) result.  

If we consider the 5-fold of the primitive triple (3 ; 4 ; 5) and the primitive triple (8 ; 15 ; 17) itself, then the 

triples (15 ; 20 ; 25) and (8 ; 15 ; 17) result. If one considers the 2-fold of the primitive triple (3 ; 4 ; 5) and the 

primitive triple (8 ; 15 ; 17) itself, then the triples (6 ; 8 ; 10) and (8 ; 15 ; 17) result. If one considers the 15-

fold of the primitive triple (3 ; 4 ; 5) and the 4-fold of the primitive triple (8 ; 15 ; 17), then the triples  

(45 ; 60 ; 75) and (32 ; 60 ; 68) result. 

(3) If one considers the 7-fold of the primitive triple (3 ; 4 ; 5) and the 3-fold of the primitive triple (7 ; 24 ; 25), 

then the triples (21 ; 28 ; 35) and (24 ; 72 ; 75) result.  

If one considers the 8-fold of the primitive triple (3 ; 4 ; 5) and the primitive triple (7 ; 24 ; 25) itself, then the 

triples (24 ; 32 ; 40) and (7; 24 ; 25) result. If one considers the 7-fold of the primitive triple (3 ; 4 ; 5) and the  

4-fold of the primitive triple (7 ; 24 ; 25), then the triples (21 ; 28 ; 35) and (28 ; 96 ; 100) result. If we consider 

the 6-fold of the primitive triple (3 ; 4 ; 5) and the primitive triple (7 ; 24 ; 25) itself, we obtain the triples  

(18 ; 24 ; 30) and (7 ; 24 ; 25). 

 

 

 
 
  

 


